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Experiment in pictures

n

(a) Pouring liquid nitrogen (white fumes). (b) Magnet (gray) flies over the (black) pastil.

Figure: Levitation experiment (students: A. Barthélemy (exp.), K. Chikhaoui (pictures)).
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From superconductivity to embedding methods and mathematics

Fact: the magnet levitates above the black knob at low temperatures.
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From superconductivity to embedding methods and mathematics

Fact: the magnet levitates above the black knob at low temperatures. Why?

o Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.

@ Superconductivity: exists for temperature T' < T, (critical temperature of the material).

Conventional theory (BCS) predicts T, < 20K (=~ —250°C)

Experiment: boiling liquid nitrogen T'= 77K (~ —200°C) }Abnormally hot

“High T, superconductor”: yttrium, barium, copper, oxygen (YBCO).

(a) Discovery: 1986 by J. G. Bednorz & K. A. Miiller. (b) Nobel: 1987 (1 year after!)
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From superconductivity to embedding methods and mathematics

Fact: the magnet levitates above the black knob at low temperatures. Why?

@ Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.

@ Superconductivity: exists for temperature T' < T, (critical temperature of the material).
Conventional theory (BCS) predicts T, < 20K (=~ —250°C)
Experiment: boiling liquid nitrogen T'= 77K (= —200°C)

“High T, superconductor”: yttrium, barium, copper, oxygen (YBCO).

} Abnormally “hot”

Actual paradigm: unconventional mechanism, due to electron correlation (hard problem).
Embedding methods: approximate computations for materials with strong correlations.
Subject of this thesis: mathematical and numerical properties of two of these methods.
@ Quantum chemistry: Density Matrix Embedding Theory (DMET, since 2010’s)
[Knizia, Chan 2012 & 2013], [Wouters, al. 2016], [Wu, al. 2020], [Faulstich, al. 2022].

o Condensed matter physics: Dynamical Mean-Field Theory (DMFT, since 1990's)

[Metzner, Vollhardt 1989], [Georges, Kotliar 1992], [Georges, al. 1996], [Kotliar, al. 2001].

In short: Mathematics of two methods that could explain levitation at T = 77K.

Alfred Kirsch Mathematics of quantum embedding methods




© Embedding methods in quantum mechanics
@ Why (not) quantum mechanics ?
@ Overview of embedding methods

© Density Matrix Embedding Theory (DMET)
@ Reduced density matrices and DMET setting
@ Main results and numerical evidences

© Dynamical Mean-Field Theory (DMFT)
@ Green's functions, Hubbard and Anderson Impurity Model

@ Mathematical (and numerical) results

@ Conclusion and perspectives
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© Embedding methods in quantum mechanics
@ Why (not) quantum mechanics ?
@ Overview of embedding methods
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Matter under microscope

(a) Graphite in a pencil. (b) Graphene in graphite. (c) Atoms in graphene.

Figure: A pencil under microscope: atoms are the building blocks of matter.
e Matter: arrangement (molecules, crystals, etc.) of atoms (carbon, oxygen, etc.).
@ Any phenomenon: consequence of the properties of (many) atoms (statistical physics).

o Properties of atoms: counterintuitive, described by quantum mechanics.
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Properties of atoms

All atoms are made of smaller particles, bound by electric forces (G —+ ©,8 «w O)
@ A nucleus, ® charged, very heavy.
e Many identical electrons (6 for carbon, 8 for oxygen), © charged, light.
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Properties of atoms

All atoms are made of smaller particles, bound by electric forces (G —+ ©,8 «w O)
o A nucleus, & charged, very heavy. Fixed (Born-Oppenheimer approximation).
e Many identical electrons (6 for carbon, 8 for oxygen), © charged, light. Moving.
Problem: we can’t see electrons, we can only measure them (energy, position).
@ Results can be random: one experiment — many results! Probabilistic.

(a) Some tower at night. (b) Orange lightning: sodium lamp and its spectrum.

Figure: Quantization of energy in cities lightning system.
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Quantum mechanics in (small) atoms

n=3
O §C
n=2 /
- 1 . W H E m
. AE = hy
+Ze
(a) Bohr model (b) Probabilistic approach (c) Easy: 1 e~ solutions (H)

Quantum mechanics gives an explanation, using a precise mathematical theory:

o Probabilistic aspects: modeled by the wavefunction ¥ : z — ¥(z).
x> |\I/( )% probability to find the electron near .

E can be measured = exists a solution to the SChrodlnger equatlon.

HU =FEV, EcR (1)
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Approximations in quantum mechanics

(a) Sodium emission spectrum:
an 1l-interacting-electron
problem. (b) Levitation with YBCO. (c) Unit cell of YBCO

Problem: Schrodinger equation is very hard to solve explicitly for large & interacting systems.
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Approximations in quantum mechanics

(a) Sodium emission spectrum:
an 1l-interacting-electron
problem. (b) Levitation with YBCO. (c) Unit cell of YBCO

Problem: Schrodinger equation is very hard to solve explicitly for large & interacting systems.

@ Numerically: high dimensional (3IV) partial differential equation (e.g. too large for FEM).
Solution: find a "good” approximation (“good”: problem dependent = many of them).

@ Reduce to one-electron models: mean-field Hamiltonians, Hartree-Fock, (TD)DFT etc.

@ Reduce to smaller but interacting systems: embedding methods, e.g. DMFT, DMET.
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Embedding methods: approximate computation of correlations

Goal: compute directly an approx. of correlations (XY') wave-funetion (DMFT&DMET).
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Embedding methods: approximate computation of correlations

Goal: compute directly an approx. of correlations (XY') wave-funetion (DMFT&DMET).

e DMET: static correlations (one-particle reduced density matrix blocks) of ground-states.

e DMFT: dynamical correlations (Green's functions blocks) of Hubbard model Gibbs states.

Principle: quantum counterpart of mean-field approach to Ising models. (=~ Domain dec.)

Fixed Decomposition: one-particle Hilbert space (DMET), partition a graph (DMFT).
Given Xpm>T a trial solution,

@ Reduce: exponential law and partial trace (DMET), Anderson Impurity Model (DMFT).
@ Solve (easier): finite dimensional problems (DMET), self-energy sparsity pattern (DMFT).
@ Update: low-level map (DMET), bath update map (DMFT).

Self-consistently! <= fixed-point equation.

Xomer =D €D (1-RDM)

DM?T _
F (Xomer) = Xowmer, Xpmrr = A € ®  (Hybridization function)
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(a) No solution: f1 : 2+ 2+ 1 (b) Many solutions: fa : z +— 22 (c) Bad solutions: f3: 2+ 22+ + 1
x goes to +00. Solutions are z = 0 and z = 1. Solutions are z = +4 (complex!)

Figure: Numerical fixed point problems: fi(z) =z, x €R.

For each of the methods, we address the following mathematical questions:
@ How many “physical " solutions are there? In which space (completeness)?

@ What are their properties? How good is the approximation?
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© Density Matrix Embedding Theory (DMET)
@ Reduced density matrices and DMET setting
@ Main results and numerical evidences
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Second quantization formalism: DMET & DMFT background

Second quantization: C*-algebra of bounded operators on fermionic Fock space of (H, (-, -)).

F=p (7), F=

P (1®...0¢,) =

Vo €M, dpl (1 ®...

a¢, =P_ aquP_,
V¢7,¢ € Ha {d¢),d¢’}

TROHE™, HE = ®H, H®Y = C, (Fock space, “F = ¢™")

Tl Z T)do(1) @ -+ ® Pg(n), o € &y (Fermions: antisymmetric)
Q@én)=(n+1)¢ @¢1...® ¢,, (Linearin ¢’ (creation))
Gy = (dL)T, ||dL|| = |las|| = |l¢|l (Antilin. in ¢, bounded)
{al,al} =0, {ag.al}=(s,¢) ({A B} =AB+BA)

Definition (Equilibrium state: average value of observables (O) = Q(0))

Given H € S(F), an equilibrium state, with density matrix p, is a > 0 bounded linear form on
bounded operators 2 : B(F) 3 O — Tr(pO), with p € S(F), Tr(p)=1, [p. (“H] 0.
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One-particle reduced density matrices (1-RDM); DMET goal

Includes: ground-states (Q : O — (¥, 0¥ y), DMET), Gibbs states (j = ¢ Z”’, DMFT).
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One-particle reduced density matrices (1-RDM); DMET goal

Includes: ground-states (Q : O — (¥, 0¥ y), DMET), Gibbs states (j = ¢ Z”’, DMFT).

Definition (One-particle reduced density matrix yqo: correlation of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) ~q associated to 2 is the unique self-adjoint
operator in B(H) represented by the sesquilinear form defined by for all ¢, ¢" € H,

(b,70d') = 0 (a;,a@ . It satisfies 0 < 7o < 1.
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One-particle reduced density matrices (1-RDM); DMET goal

Includes: ground-states (2 : O - (U, OW ), DMET), Gibbs states (j = <

).

Definition (One-particle reduced density matrix yqo: correlation of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) ~q associated to 2 is the unique self-adjoint
operator in B(H) represented by the sesquilinear form defined by for all ¢, ¢" € H,

(b,70d') = 0 (a;,a@ . It satisfies 0 < 7o < 1.

Remark: 72 = 7, Q0) = (Uy,0¥y) & Uy = a¢ dLN\(ZD (Slater state),

In such case, Ran(%pN) Span(¢;)ieqi,n7 and Tr(yy,y) = N.
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One-particle reduced density matrices (1-RDM); DMET goal

Includes: ground-states (2 : O - (U, OW ), DMET), Gibbs states (j = <

).

Definition (One-particle reduced density matrix vq: correlation of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) ~q associated to 2 is the unique self-adjoint
operator in B(H) represented by the sesquilinear form defined by for all ¢, ¢" € H,

(b,70d') = 0 (a;,a@ . It satisfies 0 < 7o < 1.
Remark: — Q)= (Ty,0¥y) & Uy= a¢ d:;N\(Z)) ( state),
In such case, Ran(yy, ) = Span(¢;)icpi,n7 and Tr(yy,) = N.
DMET goal: approximate vy, ground-state 1-RDM by D Slater 1-RDM (like Hartree-Fock).
Yoy € CH(D)={D'=D, 0<D<1, Tr(D)=N} (N-particle 1-RDM)
~pmer D € D = {D' =D, , Tr(D)=N} ( like 1-RDM)
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Decomposition and high-level map F"t (with accurate solver)

Fixed: orthogonal decomposition of H into "fragments” H = EBiV:fl X, dim(X,) = L, finite

Given D € D matrix, define for each fragment X,:
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Decomposition and high-level map F"t (with accurate solver)

Fixed: orthogonal decomposition of H into "fragments” H = EBiV:fl X, dim(X,) = L, finite

Given D € D matrix, define for each fragment X,:
@ “Ilmpurity space”: W, p = D(X,) + X, = D(X;)+(1 — D)(X,).
D(X,)

”[ ‘\_.",]

Figure: DMET mapping principle. Assumption: dim(W, p) = 2L, (maximal).
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Decomposition and high-level map F"t (with accurate solver)

Ny

Fixed: orthogonal decomposition of H into "fragments” H = @, 7, X,, dim(X,) = L, finite
Given D € D matrix, define for each fragment X,:

@ “Ilmpurity space”: W, p = D(X,) + X, = D(X,)+(1 — D)(X,).

Q@ H =W, poHy) =

p e p\Ile.D ® p\I/%in:/D

in F o~ F(Wy,p)0F(Hp), “F = M
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Decomposition and high-level map F"t (with accurate solver)

Ny

Fixed: orthogonal decomposition of H into "fragments” H = @, 7, X,, dim(X,) = L, finite
Given D € D matrix, define for each fragment X,:

@ “Ilmpurity space”: W, p = D(X,) + X, = D(X,)+(1 — D)(X,).

Q@ H =W, poHy) =

© Partial trace,

p e p\Ile.D ® p\I/%in:/D

H," = Trrgem, ) (1@ paen, ) H)

in F o~ F(Wy,p)0F(Hp), “F = M
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Decomposition and high-level map F"t (with accurate solver)

Fixed: orthogonal decomposition of H into "fragments” H = EBNf X, dim(X,) = L, finite
Given D € D matrix, define for each fragment X, :

@ “Ilmpurity space”: W, p = D(X,) + X, = D(X,)+(1 — D)(X,).
Q@ H=WopdH = |p=puw, , @ Pusen, |in F = F(Wep)2F (ML), “F ="

@ Partial trace, solve (accurately) “grand-canonical” ground-state problem

T = Trrum,) (1@ pugy, )H) = inf (0%, (AT — b, ) W),
; ' VP eF(We, D)

(N, = dI'(Ilx,): fragment number operator, II,: orthogonal projector on X,.)
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Fixed: orthogonal decomposition of H into "fragments” H = EBNf X, dim(X,) = L, finite
Given D € D matrix, define for each fragment X, :

@ “Ilmpurity space”: W, p = D(X,) + X, = D(X,)+(1 — D)(X,).
Q@ H=WopdH = |p=puw, , @ Pusen, |in F = F(Wep)2F (ML), “F ="

@ Partial trace, solve (accurately) “grand-canonical” ground-state problem = 1-RDM: P,

T = Trrum,) (1@ pugy, JH) = inf (0, (AT — b, ) W),
; ' VPeF(We, D)

(N, = dI'(ITx,): fragment number operator, II,: orthogonal projector on X,.)
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Decomposition and high-level map F"t (with accurate solver)

Fixed: orthogonal decomposition of H into "fragments” H = EBivzfl X, dim(X,) = L, finite
Given D € D matrix, define for each fragment X,:
@ “Ilmpurity space”: W, p = D(X,) + X, = D(X,)+(1 — D)(X,).

@ H=WopiHh = [ =puw, , ® e |in F oz F(Wo p)0F(HTY), "F = H"

@ Partial trace, solve (accurately) “grand-canonical” ground-state problem = 1-RDM: P, ,

H'p = Tez(eey) (1@ pue, )H) = inf (W, (ﬁm’a - MNz) TP,
* ’ VP EF(Ws, p)

(N, = dI'(ITx,): fragment number operator, II,: orthogonal projector on X,.)

Ny H1PM’1H1 0 0
= FHL(D) = Z HacPu,xHx = 0 0 , M s.t TI‘(FHL(D)) =N
r=1 0 0 HN/ P/L-N/ nN/
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Low level map F't (feedback) and DMET equations

By definition, FHL(D) € P = Bd(CH(D)), with Bd(0) = 37, 11,011,
Feedback: given P € P, find a D € D s.t. Bd(D) = P (representability issues [Lemma 2.8]).

For instance, F'Y(P) = argmin E™F(D), &E"F(D): H Hartree-Fock energy functional.
DeD,Bd(D)=P

DMET equations: impose self-consistency (define FPMET = FLL o fHL) e

D=F“(P)eD — D=FMET(Dy DeD
P=F"(D)eP P=F"™(D) e P.

Mathematical starting point: DMET *“is exact in the non-interacting [...] limit" [Knizia, 2012].

Consider H = dI'(H) + H!, H' : interactions e.g. two-body.
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Low level map F't (feedback) and DMET equations

By definition, FHL(D) € P = Bd(CH(D)), with Bd(0) = 37, 11,011,
Feedback: given P € P, find a D € D s.t. Bd(D) = P (representability issues [Lemma 2.8]).

For instance, F*'Y(P) = argmin &£9F(D), &WF(D): H Hartree-Fock energy functional.
DeD,Bd(D)=P

DMET equations: impose self-consistency (define FPMET = FLL o FHL) e,

D=FYP)eD — D=F°Y6 (D) DeD
P=F"(D)eP P=F" (D) eP.

Mathematical starting point: DMET *“is exact in the non-interacting [...] limit” [Knizia, 2012].

Consider H,, = dT'(H®) + o H', with « € [0,1]
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By definition, FHL(D) € P = Bd(CH(D)), with Bd(0) = 37, 11,011,
Feedback: given P € P, find a D € D s.t. Bd(D) = P (representability issues [Lemma 2.8]).

For instance, F*'Y(P) = argmin &'F(D), &WF(D): H, Hartree-Fock energy functional.
DeD,Bd(D)=P

DMET equations: impose self-consistency (define FPMET = FLL o FHL) e,

D=FYP)eD D=F°MET(D) DeD
HL — -
P=F>(D)eP P=F(D)eP.

Mathematical starting point: DMET *“is exact in the non-interacting [...] limit” [Knizia, 2012].
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Low level map F't (feedback) and DMET equations

By definition, FHL(D) € P = Bd(CH(D)), with Bd(0) = 37, 11,011,
Feedback: given P € P, find a D € D s.t. Bd(D) = P (representability issues [Lemma 2.8]).

For instance, F*'Y(P) = argmin &'F(D), &WF(D): H, Hartree-Fock energy functional.
DeD,Bd(D)=P

DMET equations: impose self-consistency (define FPMET = FLL o FHL) e,

D=FYP)eD D=F°MET(D) DeD
HL — -
P=F>(D)eP P=F(D)eP.

Mathematical starting point: DMET *“is exact in the non-interacting [...] limit” [Knizia, 2012].

Consider H, = dT'(H®) + o H', with a € [0,1] small.
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Weakly interacting uniqueness

Proposition 2.1: DMET non-interacting exactness, o = 0

Under the following assumptions on H° and (X;)ge[i,n]:
Al) The one-particle Hamiltonian H? has an energy gap: ey <0 < eny1,

A2) The associated unique ground-state 1-RDM Dy = xg_(H") satisfies dim(W,. p,) = 2L,

the 1-RDM Dy is a fixed point of the non-interacting F'MET (nothing ensures it is unique !).
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Weakly interacting uniqueness

Proposition 2.1: DMET non-interacting exactness, o = 0

Under the following assumptions on H° and (X;)ge[i,n]:

Al) The one-particle Hamiltonian H? has an energy gap: ey <0 < eny1,

A2) The associated unique ground-state 1-RDM Dy = xg_(H") satisfies dim(W,. p,) = 2L,
the 1-RDM Dy is a fixed point of the non-interacting F'MET (nothing ensures it is unique !).

Theorem 2.4: DMET weakly interacting locally unique solution, a small

Under the following extra assumptions on H° and (Xz)ze, N

A3) The block-diagonal map Bd is surjective from Tp,D to Tgw(p,)P,

A4) The response function R : Tpw(pyyP — Tri(py)P is invertible [Eq. 2.26],
there exists a; > 0 and a neighborhood w of Dy in D s.t. for all @ € [0,a),

D =FPMET(D) D ecw has a unique solution DOVET,
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Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at Oth order

Moreover, a — D2MET s real-analytic on [0, a1 ) and such that DYMET = Dy = g (H?).

Proof’s idea: implicit function theorem. “Physical”: shares properties of the exact solution.
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Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at Oth order

Moreover, a — D2MET s real-analytic on [0, a1 ) and such that DYMET = Dy = g (H?).

Proof’s idea: implicit function theorem. “Physical”: shares properties of the exact solution.

Theorem 2.5: DMET is exact up to O(a?)
Under the same assumptions (A1)-(A4), it holds DPMET = peact 1 (a?).
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Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at Oth order
Moreover, o — DPMET is real-analytic on [0, o) and such that DEMET = Dy = yr_ (H?)
Proof’s idea: implicit function theorem. “Physical”: shares properties of the exact solution.

Theorem 2.5: DMET is exact up to O(a?)
Under the same assumptions (A1)-(A4), it holds DPMET = peact 1 (a?).

Error in first derivative

00 02 04 06 08 10
Interaction strength {a)

(a) Hip molecule and its fragmentation (ST0-6G) (b) First derivative error, w.r.t. .
18/32
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© Dynamical Mean-Field Theory (DMFT)
@ Green's functions, Hubbard and Anderson Impurity Model
@ Mathematical (and numerical) results
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's functions: dynamic correlations ...

Hamiltonian dynamics on a C*- algebra strongly continuous one-parameter unitary semigroup.
Heisenberg picture H : O — (H(O) : t s i Oe~itH) (useful: (O)(t) = QH(O)(t))).
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's functions: dynamic correlations ...

Hamiltonian dynamics on a C*- algebra strongly continuous one-parameter unitary semigroup.
Heisenberg picture H : O — (H(O) : t s i Oe~itH) (useful: (O)(t) = QH(O)(t))).

Definition (One-body time-ordered 's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Q,~the one-body time-ordered Green's function is the
unique bounded-operator-valued map G : R — B(H) defined by, Vt € R, V¢, ¢’ € H,

(6, GG®)9) = xm, (O (H(@s) Bl ) —xr_ ()2 (al Has) ()

added particle added hole
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's functions: dynamic correlations ...

Hamiltonian dynamics on a C*- algebra strongly continuous one-parameter unitary semigroup.
Heisenberg picture H : O — (H(O) : t s i Oe~itH) (useful: (O)(t) = QH(O)(t))).

Definition (One-body time-ordered 's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Q,~the one-body time-ordered Green's function is the
unique bounded-operator-valued map G : R — B(H) defined by, Vt € R, V¢, ¢’ € H,

(6, GG®)9) = xm, (O (H(@s) Bl ) —xr_ ()2 (al Has) ()

added particle added hole

@ Quantum Green's functions are explicitly defined as dynamic correlations.
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's functions: dynamic correlations ...

Hamiltonian dynamics on a C*- algebra strongly continuous one-parameter unitary semigroup.
Heisenberg picture H : O — (H(O) : t s i Oe~itH) (useful: (O)(t) = QH(O)(t))).

Definition (One-body time-ordered 's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Q,~the one-body time-ordered Green's function is the
unique bounded-operator-valued map G : R — B(H) defined by, Vt € R, V¢, ¢’ € H,

(6, GG®)9) = xm, (O (H(@s) Bl ) —xr_ ()2 (al Has) ()

added particle added hole

@ Quantum Green's functions are explicitly defined as dynamic correlations.
o Enough for: average energy (Galitskii-Migdal, ' two-body), metal/ins. (numerics).
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's functions: dynamic correlations ...

Hamiltonian dynamics on a C*- algebra strongly continuous one-parameter unitary semigroup.
Heisenberg picture H : O — (H(O) : t s i Oe~itH) (useful: (O)(t) = QH(O)(t))).

Definition (One-body time-ordered 's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Q,~the one-body time-ordered Green's function is the
unique bounded-operator-valued map G : R — B(H) defined by, Vt € R, V¢, ¢’ € H,

(6, GG®)9) = xm, (O (H(@s) Bl ) —xr_ ()2 (al Has) ()

added particle added hole

@ Quantum Green's functions are explicitly defined as dynamic correlations.
o Enough for: average energy (Galitskii-Migdal, ' two-body), metal/ins. (numerics).
e Experimentally “measurable’: in Angle Resolved PhotoEmission Spectroscopy (ARPES).
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's functions: ... are Green's functions if non-interacting.

Non-interacting electrons: H = dT'(H®) with H? € S(H) = H(ag)(t) = Qim0 -
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's functions: ... are Green's functions if non-interacting.

Non-interacting electrons: H = dT'(H®) with H? € S(H) = H(ag)(t) = Qim0 -

When is Green: non-interacting electrons.

In this case, G satisfies in the distribution sense, for all ¢ € D(H?) (i% — HO) Go = 6o

Its Generalized Fourier Transform G : C;. — B(H), defined by (C. = {S(2) > 0})

Glz) = G4 (2) + G_(3), Gilz) = /R FtE(H)dt, G (z) = / ¢ (t)dt.

is well-defined and is the resolvent of H: for all z € C, |G(z)= (z— HO)_1 :
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's functions: ... are Green's functions if non-interacting.

Non-interacting electrons: H = dT'(H®) with H? € S(H) = H(ag)(t) = Qim0 -

When is Green: non-interacting electrons.

In this case, G satisfies in the distribution sense, for all ¢ € D(H?) (i% — HO) Go = 6o

Its Generalized Fourier Transform G : C;. — B(H), defined by (C. = {S(2) > 0})

Glz) = G4 (2) + G_(3), Gilz) = /R FtE(H)dt, G (z) = / ¢ (t)dt.

is well-defined and is the resolvent of H: for all z € C, |G(z)= (z— HO)_1 :

o In general, —G is Nevanlinna-Pick funct.: G(z) = [, ~-dA(e), A >0 (B(H)-valued)
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's functions: ... are Green's functions if non-interacting.

Non-interacting electrons: H = dT'(H®) with H? € S(H) = H(ag)(t) = Qim0 -

When is Green: non-interacting electrons.

In this case, G satisfies in the distribution sense, for all ¢ € D(H?) (i% — HO) Go = 6o

Its Generalized Fourier Transform G : C;. — B(H), defined by (C. = {S(2) > 0})

Glz) = G4 (2) + G_(3), Gilz) = /R FtE(H)dt, G (z) = / ¢ (t)dt.

is well-defined and is the resolvent of H: for all z € C, |G(z)= (z— HO)_1 :

o In general, —G is Nevanlinna-Pick funct.: G(z) = [, ~-dA(e), A >0 (B(H)-valued)

zZ—E€

e dim(H) < 4o0: Kéllen-Lehmann, spectral measure A describes one-body excitations,

(6,6(2)6) = 3 %w,wx Lalw), HY = Egp, b= put.
P, eEB

Alfred Kirsch Mathematics of quantum embedding methods



Hubbard model: interacting electrons on a graph

o Given a finite graph Gy = (A, E), the Fock space is

-FH:®-F17 -Fl:Span(|0>7|T>a|¢>7|T~L>)

iEA

@ Given a hopping matrix T': E — R and an on-site
repulsion U : A — R, the Hamiltonian is

Hy = H° + H' € S(Fy), with

ﬁo = Z Tlv] (&j,o_dj,g + d;o_di70-> P

(a) Hubbard model on Cg.

{ij}er
Analytic soluti iy
nalytic solutions: N A . AT A
[Lieb 2001]. H' =3 Usiighig, o =} obi0.
i€EA
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Anderson Impurity Model (AIM): an embedded Hubbard model

<’> 3 @ Given B € N a bath dimension,

B
Uy Fam = FH @ Foath,  Fbath = ®.7:1
z) ,{\ N e i=1
// ® 1 Given bath levels € : [1,B] — R and a
:i-:f_'l;‘l/ I@F coupling V: [1, B] x A — R,
. I\ /'1/ £ 1= Hang = Hy + f{gath 4 ﬁgm with
\“1 Hpp, = Z ek (Mt + Nk ) ) s
ke[1,B]
Vo=V e <D 1 Hyy= ) Vi (d;rf,a&i,o + dl,aék,o) '
ke[1,B]
ieA,o=1,]

(a) AIM with Gy = C4 and B = 5.
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Self-energy and hybridization functions

For finite dimensional systems, assuming H = dI'(H°) + H’, (Hubbard and AIM),
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Self-energy and hybridization functions

For finite dimensional systems, assuming H = dI'(H°) + H’, (Hubbard and AIM),

Definition (Self-energy: ¥ s.it. G(2) = (2 — (H® + E(z))fl (local non-interacting picture))

Given (), the self-energy is the unique bounded operators X : C. — B(#H) defined by, Vz € C,,

2(z) = (Go(z))71 — el ==l —Ele (=X is Nevanlinna-Pick.)
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Self-energy and hybridization functions

For finite dimensional systems, assuming H = dI'(H°) + H’, (Hubbard and AIM),

Definition (Self-energy: ¥ s.it. G(2) = (2 — (H® + E(:))_l (local non-interacting picture))

Given (), the self-energy is the unique bounded operators X : C. — B(#H) defined by, Vz € C,,

2(z) = (Go(z))71 — el ==l —Ele (=X is Nevanlinna-Pick.)

Definition (Hybridization: A s.t. G%(2)imp = (2 — (Hi)y, + A2 )))_1 (local isolated picture))
For an AIM, H = Himp ® ’H#np, the hybridization function A : Cy — B(Himp is defined by

A(z) =z - Hd, — (G2 ),mp)_1 (Schur complement). (—A is Nevanlinna-Pick)
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Self-energy and hybridization functions

For finite dimensional systems, assuming H = dI'(H°) + H’, (Hubbard and AIM),

Definition (Self-energy: ¥ s.it. G(2) = (2 — (H® + E(:))_1 (local non-interacting picture))

Given (), the self-energy is the unique bounded operators X : C. — B(#H) defined by, Vz € C,,

2(z) = (Go(z))71 — el ==l —Ele (=X is Nevanlinna-Pick.)

Definition (Hybridization: A s.t. G%(2)imp = (2 — (Hi)y, + A2 )))_1 (local isolated picture))
For an AIM, H = Himp ® ’H#p, the hybridization function A : Cy — B(Himp is defined by

A(z) =z - Hd, — (G2 ),mp)_1 (Schur complement). (—A is Nevanlinna-Pick)

DMFT foundation: sparsity pattern and impurity solver [Lin, Lindsey 2019], [Proposition 3.2.8]
Given an AIM (G, T,U, B,€,V), Eatm = Zimp @ 0 and Eipp = ImpSovaH’T’U@(A).
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Dynamical Mean-Field Theory (DMFT) equations

DMFT goal: (7 associated to Gibb's states p = %e‘ﬁ(g_“]\?) of Hubbard (Gy = (A, E),T,U)
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Dynamical Mean-Field Theory (DMFT) equations

DMFT goal: (7 associated to Gibb's states p = %e‘ﬁ(g_“]\?) of Hubbard (Gy = (A, E),T,U)
DMFT principle: approximate using many but simpler <G7)ie[[u‘mﬂ of Gibb's states of AIM.
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DMFT parameters (fixed):

Dynamical Mean-Field Theory (DMFT) equations

DMFT goal: (7 associated to Gibb's states p = %e‘ﬁ(g_“]\?) of Hubbard (Gy = (A, E),T,U)
DMFT principle: approximate using many but simpler <G7)ie[[u‘mﬂ of Gibb's states of AIM.

DMFT equations:

Giimp(Ai) = GpMmFT,i
Goaer = Gy ' — Spwmer
[B]

YDMFT = @ >4 imp
i=1

Y imp = ImpSolv;(A;)
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Dynamical Mean-Field Theory (DMFT) equations

DMFT goal: (7 associated to Gibb's states p = %e‘ﬁ(g_“]\?) of Hubbard (Gy = (A, E),T,U)
DMFT principle: approximate using many but simpler <G’)i€[[lw‘m]] of Gibb's states of AIM.

Ay
Y
s L) Ly
O O
—
DMF'T ng ) [
a1 Ly
e =
S Q)
’ Y

DMFT parameters (fixed):

Q@ Partition P = (A;),c[; s of A Our work: singletons.

DMFT equations:

Giimp(Ai) = GpMmFT,i
Goaer = Gy ' — Spwmer
[B]

YDMFT = @ >4 imp
i=1

Y imp = ImpSolv;(A;)
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Dynamical Mean-Field Theory (DMFT) equations

DMFT goal: (7 associated to Gibb's states p = %e‘ﬁ(g_“]\?) of Hubbard (Gy = (A, E),T,U)
DMFT principle: approximate using many but simpler (G,-),:C[“Amﬂ of Gibb's states of AIM.

. DMFT equations:
P Giimp(Ai) = GpMmFT,i
i e -1 0,—1
O O Gpurr = Gp — YpmrT
By ng o N
S e YpmMrT = @ 2 imp
; R s i=1
O
= Y imp = ImpSolv;(A;)

DMFT parameters (fixed):
Q@ Partition P = (A;),c[; s of A Our work: singletons.

@ Approximation of ImpSolv (~ DFT universal functional). Our work: IPT
approximation.
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The Iterated Perturbation Theory (IPT) impurity solver (vanilla)

5 Material -
{crystalllne solid) |_

o Freq. used in physics.
@ 2nd order pert. in U.
o Figure: [Georges 2016].

Assumptions: single-site translation-invariant paramagnetic DMFT (half-filling)

Assume that || = [A| and (G, T, U) is a (weighted) vertex-transitive graph.
Restrict to solutions Vi € B, —A;=—-A:C4 - Ci, —Ziimp=-2:C; — C;.

IPTs(U € R, A): defined in Matsubara’s formalism, temperature 1/, analytic continuation:
Find ¥ analytic s.t. (=) >0 (Nevanlinna—Pick function) and Vn € N,  Y(iw,) = 2T

(277,; ]-)7T’ EIPT U2/ ezwnT Z e —iw, 1T zwn/ _ A(iwn/))fl)i’zd,}_.

nEZ

with w,, =
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Non-existence of finite dimensional solution

-1

Az) =W (2 — H} —%(z)) W

% = IPT4(U, A)
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Non-existence of finite dimensional solution

A(z) =W (2= H) —=%(2)) "

% = IPT4(U, A)

W' =BUg, 7(2(2))
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Non-existence of finite dimensional solution

A(z) =W (2= H) —=%(2)) "

% = IPT4(U, A)

W' =BUg, 7(X(2)) <= A=FPMFT(A) A cD?
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Non-existence of finite dimensional solution

A(z) =W (z— HY —=%(2)) ' Wt = BUg,, 7(5(2)) — A =FPMFT(A) A e D?

% = IPT4(U, A)

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

B
Foran AIM, A(z) =) ———. For A € Ran(BUg,, 1),y |[Vil> = WWT € R.
k=1 & k=1
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Non-existence of finite dimensional solution

1

A(z) =W (2 — H} —=%(z)) " W' =BUg, 7(2(2)) = A=FMT(A)AecD?
¥ =1IPTs(U, A)

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

Foran AIM, A(z) =) - Vel®
k

Try: D=9 =

WW1S (P(R) N {supp(x) fin.}),

Alfred Kirsch

k=1

Su(z) =

/

dp(e)

Z—€

. For A € Ran(BUg,, 1) Z [Vil2 = WW' eR.

(Stieljes transform).
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Non-existence of finite dimensional solution

A(z) =W (z— H) —=%(2)) " Wt =
S = IPT4(U, A)

BUg, 7(2(2)) <= A = FPMFT(A) A cD?

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

For an AIM, A(z) =

Try: © =Dy = WWHIS (PR) N {supp(p) fin.}), |S,.(z) = / dule)

B

2
=y 12T NN € Ran(BUg, 1), Y IVil* =
k

k=1

Z—€

wWwt eR.

(Stieljes transform).

Proposition (Well-def.: BU[Lindsey 2019], IPT[Prop. 3.2.18]; non-3 of solution [Prop. 3.3.5])

BU:6; — Dy, IPT : Dy — & are well-defined w. &5 =

S(M(R) N {supp(u) fin})

Apart from strictly/non interacting cases, DMFT = BU o IPT has no fixed point in ©

Alfred Kirsch
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Non-existence of finite dimensional solution

-1

A(z) =W (2 — H} —%(z)) " W' =BUg, (5(2)) = A=FMT(A)AeD?

S =1IPTs(U, A)

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

B—co 2 B
Foran AIM, A(z) = Y ZML For A € Ran(BUg,, 1), > [Vil> =WWT eR.
=i 2 k=1

zZ— €

Try: @ =D = WWIS (P(R) N {supp() fin.}), |Su(z) = /M (Stieljes transform).

Proposition (Well-def.: BU[Lindsey 2019], IPT[Prop. 3.2.18]; non-3 of solution [Prop. 3.3.5])

BU:&¢ — D5, IPT : ®f — S are well-defined w. &5 = S(M 4 (R) N {supp(p) fin})
Apart from strictly/non interacting cases, DMFT = BU o IPT has no fixed point in ;.
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Extension of domain and existence

Extension: | D = WWIS(P(R)), & =S(M,(R))
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Extension of domain and existence

Extension: | D = WWIS(P(R)), & =S(M,(R))

Physics: “Infinite” dimensional bath.  Mathematics: measure analysis (up to S,S571).
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Extension of domain and existence

Extension: | D = WWIS(P(R)), & =S(M,(R))

Physics: “Infinite” dimensional bath.  Mathematics: measure analysis (up to S,S571).

[Propositions 3.3.6-3.3.8], BU and IPT for infinite dimensional bath

BU : ® — & is well-defined. IPT admits a unique continuous extension ® — & for the
Kantorovich-Rubinstein distance.

Alfred Kirsch Mathematics of quantum embedding methods



Extension of domain and existence

Extension: | D = WWIS(P(R)), & =S(M,(R))

Physics: “Infinite” dimensional bath.  Mathematics: measure analysis (up to S,S571).

[Propositions 3.3.6-3.3.8], BU and IPT for infinite dimensional bath

BU : ® — & is well-defined. IPT admits a unique continuous extension ® — & for the
Kantorovich-Rubinstein distance.

Main theorem ([Theorem 3.3.9], [Proposition 3.3.10])
DMFT admits a fixed point in ©. Any fixed point admits fin. moments up to any order.
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Extension of domain and existence

Extension: | D = WWIS(P(R)), & =S(M,(R))

Physics: “Infinite” dimensional bath.  Mathematics: measure analysis (up to S,S571).

[Propositions 3.3.6-3.3.8], BU and IPT for infinite dimensional bath

BU : ® — & is well-defined. IPT admits a unique continuous extension ® — & for the
Kantorovich-Rubinstein distance.

Main theorem ([Theorem 3.3.9], [Proposition 3.3.10])
DMFT admits a fixed point in ©. Any fixed point admits fin. moments up to any order.

Proof (with measures).

DMEFT : u with k-moments — k + 4 moments (compactness) and weakly continuous.
Schauder(-Singbal) fixed-point theorem on P(R) (completeness). O
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Numerical results: Mott transition (Matsubara discretized)

— Um2

U=4

10 | thme

u=8

u=10
08
(K]

(=1

0.4 4
0.2
004

-10.0 =15 5.0 -2.3 0.0 23 5.0 ] 10.0

Figure: Spectral function p (a.k.a. A): analytic continuation results for the Hubbard dimer (8 = 1).
Metallic criteria: p(0) > 0 (TRIQS simulations).
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Outline

@ Conclusion and perspectives
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Concluding table

H DMFT

\ DMET

General framework

Equilibrium state

Gibbs state, p = e PH—1N) /7

Ground state, p proj. onto ¥

Reduced quantity

Green's function G (Pick function)

1-RDM D (self-adjoint)

Model of interest

Hubbard model (Gg = (A, E),T,U)

Any finite dimensional

Decomposition of H

DMFT partition B of A

1 decomposition @, X,

Mean-field model

Collection of AlMs

Collection of (W, p, H,'S)

Bath dimension

Infinite (non-interacting)

dim(W, p) = 2dim(X,)

Impurity step

Impurity solver A — X (IPT here)

High-level FA¥: D — P

Self-consistency

Bath Update map ¥ — A

Low-level FXL - P — D

Mathematical results on self-consistent equations in this thesis

Existence Global , conditional Chapter 4 Near o = 0, under (A1)-(A4)
Uniqueness Trivial limits , locally Chapter 4 Near a = 0, locally
Exactness Trivial limits First order in «, near « =0

Table: Overview table of the main features of DMFT and DMET from the perspective of this thesis.
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Regarding DMET:
e Strictly interacting setting (already started by Cancgs, Faulstich et al.).

@ Mathematics of the finite-temperature extension
Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

Regarding DMFT:

@ Preliminary results: numerical analysis Matsubara discretized scheme, new numerical
scheme and particle-hole symmetry condition.

@ Uniqueness to the IPT-DMFT equations.

@ Soon: Impurity solver well-posedness (easier setting to study quantum Luttinger-Ward
functional formalism [Lin, Lindsey 2021]) and higher order solvers (CTQMC).

o Later: thermodynamic limits, "d = c0” exactness [Metzner, Vollhardt 1989].
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Numerical results: DMET assumptions’ test on Hg.

Assumptions (A3) and (A4)

— A(3)
—— A(4)

0.9570 0.9574 0.9578 0.9582
© (rel.)

(a) He molecule, with © varying. (b) A3 & A4 assumptions, with © varying.
Figure: Numerical test of assumptions A3 & A4 on Hg molecule.
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Second derivative [on fragments (P)]

—— HF /,/'
DMET S /
¥

i

FCI A

0.0 0.2 0.4 0.6 0.8 1.0
© (rel.)

(a) 182 Pa|,,_,llp for HF, DMET and FCl

Numerical results: DMET VS Hartree-Fock

Second derivative [full 1-rdm (D)]

10+

s e

0.0 0.4 0.6 0.8

@ (rel.)

1.0

(b) \|8§DQ|QZOHF for HF, DMET and FCI

Figure: Numerical tests for Hg molecule, with varying ©.
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Matsubara's frequencies discretized IPT-DMFT equations

Definition (Matsubara discretized scheme)
Given N, € N a Matsubara’s frequencies cutoff, solve for all n € [0, N,],

-1

Ap =W (iw, — H} —%,) " W' (3)
3
s |k : .
i = U2/ e’ | = Z e~ T (fwp — Apr) " | dr (4)
e B n/=—(No+1)

. —N,+1
with —A = (_A")nE[[O,Nw]] s - = (_E")ne[[O,Nw]] C (CJ,. .
Looks similar: completely different strategy (and results !), no Nevanlinna-Pick functions.
— Non-physical solutions exist (and are exhibited !).
Only conditional existence, but uniqueness result (also conditional, finite dimensional).
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Theoretical results: conditional existence

Ry, = sup {R €R, st. Vze BO,R)NCTy " Wne [0,N], S (Fan,(2) < o} . (5)

N, 3
where Frv. () = ) [T G@n+1) /74 20) 7" (6)
ni,na2,n3=—(N,+1) i=1
ni+ns4+nz=n—1

Theorem 4.2.1: Existence of solution

The critical radius Ry, is well-defined and > 0. Moreover, V3 € R% , WT € Rp_; satisfying

BIW |2 < \/2V2RN,, (7)

and VU € R, (3) & (4) admit a solution (A,X) € Dg N, X Spg n,,u Where

_Nw
Do, = BO,Rn./B) N (-C+ "), gm0 = IPTA, (Dpn.).
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Theoretical results: conditional uniqueness

LNu = nerﬁ)z?‘]}éw]] Lip(CJr (Fn,Nw)' (8)

Theorem 4.2.2: Uniqueness of solution

Forall N, € N, B e R*, Wt € R;_;, U € R satisfying with the previous assumption and

2 2
(G

™

the discretized IPT-DMFT equations (3) (4) admits a unique solution in D5 x &g n,,.v-

Moreover, the fixed point algorithm sequence (A(") neN

A e D4, VYneN, AMHD —DMFTy, (AM™)

converges linearly toward this solution.
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Numerical results: Matsubara discretized, Hubbard dimer.

10

— U=6
1p? U=g
u=10
10°% u=12
— u=14
1o U=16
101 ‘..\ — U=18

1071

[ 10 20 30 0 W00 200 300 400 40 60

Figure: Residual AT — A5 in log scale, for n € [0, Nite:], 8 =1 (top), B = 10 (bottom).
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Preliminary results: new numerical scheme for IPT-DMFT

Solutions: measures with finite moments up to any order: show it numerically?
New “exact diagonalization”-truncation num. scheme. without num. analytic continuation.

o005 -

(a) Nevanlinna-Pick measure of A (b) Nevanlinna-Pick measure of A (log scale)

Figure: New ED-truncation scheme results, U = 4, 8 = 0, Hubbard dimer.
Suggests measure is exponentially decreasing: would prove uniqueness of the solution!
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Preliminary results: particle-hole symmetry (Coulson Rushbrooke)

Hubbard: particle-hole symmetry < Gy is bipartite [Bach, Solovej, Lieb 1994] (76 “sym”)

f\ i) [ v

0.005 -

(a) Matsubara discretized (b) New ED-truncation scheme

Theorem (translation invariant IPT-DMFT particle-hole symmetry condition)

Given v an IPT-DMF'T fixed point: v is symmetric <= Gy is bipartite.

Proof: for now, 8 = 0 only.
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