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Experiment in pictures

(a) Pouring liquid nitrogen (white fumes). (b) Magnet (gray) flies over the (black) pastil.

Figure: Levitation experiment (students: A. Barthélemy (exp.), K. Chikhaoui (pictures)).
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From superconductivity to embedding methods and mathematics

Fact: the magnet levitates above the black knob at low temperatures.

Why?

Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.

Superconductivity: exists for temperature T ≤ Tc (critical temperature of the material).

Conventional theory (BCS) predicts Tc ≤ 20K (≈ −250°C)
Experiment: boiling liquid nitrogen T = 77K (≈ −200°C)

}
Abnormally “hot”

“High Tc superconductor”: yttrium, barium, copper, oxygen (YBCO).
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Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.

Superconductivity: exists for temperature T ≤ Tc (critical temperature of the material).

Conventional theory (BCS) predicts Tc ≤ 20K (≈ −250°C)
Experiment: boiling liquid nitrogen T = 77K (≈ −200°C)

}
Abnormally “hot”

“High Tc superconductor”: yttrium, barium, copper, oxygen (YBCO).

(a) Discovery: 1986 by J. G. Bednorz & K. A. Müller. (b) Nobel: 1987 (1 year after!)
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Fact: the magnet levitates above the black knob at low temperatures. Why?
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Conventional theory (BCS) predicts Tc ≤ 20K (≈ −250°C)
Experiment: boiling liquid nitrogen T = 77K (≈ −200°C)

}
Abnormally “hot”

“High Tc superconductor”: yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: unconventional mechanism, due to electron correlation (hard problem).

Embedding methods: approximate computations for materials with strong correlations.
Subject of this thesis: mathematical and numerical properties of two of these methods.

Quantum chemistry: Density Matrix Embedding Theory (DMET, since 2010′s)
[Knizia, Chan 2012 & 2013], [Wouters, al. 2016], [Wu, al. 2020], [Faulstich, al. 2022].

Condensed matter physics: Dynamical Mean-Field Theory (DMFT, since 1990′s)
[Metzner, Vollhardt 1989], [Georges, Kotliar 1992], [Georges, al. 1996], [Kotliar, al. 2001].

In short: Mathematics of two methods that could explain levitation at T = 77K.
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1 Embedding methods in quantum mechanics
Why (not) quantum mechanics ?
Overview of embedding methods

2 Density Matrix Embedding Theory (DMET)
Reduced density matrices and DMET setting
Main results and numerical evidences

3 Dynamical Mean-Field Theory (DMFT)
Green’s functions, Hubbard and Anderson Impurity Model
Mathematical (and numerical) results

4 Conclusion and perspectives
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Matter under microscope

(a) Graphite in a pencil. (b) Graphene in graphite. (c) Atoms in graphene.

Figure: A pencil under microscope: atoms are the building blocks of matter.

Matter: arrangement (molecules, crystals, etc.) of atoms (carbon, oxygen, etc.).

Any phenomenon: consequence of the properties of (many) atoms (statistical physics).

Properties of atoms: counterintuitive, described by quantum mechanics.
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Properties of atoms

All atoms are made of smaller particles, bound by electric forces (⊕ →← 	,	! 	)

A nucleus, ⊕ charged, very heavy.

Fixed (Born-Oppenheimer approximation).

Many identical electrons (6 for carbon, 8 for oxygen), 	 charged, light.

Moving.

Problem: we can’t see electrons, we can only measure them (energy, position).

Results can be
:::::::
random: one experiment → many results! Probabilistic.

Results can be . . . . . . . . . . . .quantized: discrete values, “0 or 1, not 0.5” (energy, measured by light).

(a) Some tower at night. (b) Orange lightning: sodium lamp and its spectrum.

Figure: Quantization of energy in cities lightning system.
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Quantum mechanics in (small) atoms

(a) Bohr model (b) Probabilistic approach (c) Easy: 1 e− solutions (H)

Quantum mechanics gives an explanation, using a precise mathematical theory:

:::::::::::
Probabilistic aspects: modeled by the

::::::::::::
wavefunction Ψ : x 7→ Ψ(x).

x 7→ |Ψ(x)|2: probability to find the electron near x.

. . . . . . . . . . .Quantized aspects: modeled by the . . . . . . . . . . . . . .Hamiltonian Ĥ : Ψ 7→ ĤΨ.
E can be measured ⇒ exists a solution to the Schrödinger equation.

ĤΨ = EΨ, E ∈ R (1)
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Approximations in quantum mechanics

(a) Sodium emission spectrum:
an 11-interacting-electron

problem. (b) Levitation with YBCO. (c) Unit cell of YBCO

Problem: Schrödinger equation is very hard to solve explicitly for large & interacting systems.

Analytically: general properties of the solution (e.g. . . . . . . . . .spectral . . . . . . . .theory).

Numerically: high dimensional (3N) partial differential equation (e.g. too large for FEM).

Solution: find a “good” approximation (“good”: problem dependent ⇒ many of them).

Reduce to one-electron models: mean-field Hamiltonians, Hartree-Fock, (TD)DFT etc.

Reduce to smaller but interacting systems: embedding methods, e.g. DMFT, DMET.
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Embedding methods: approximate computation of correlations

Goal: compute directly an approx. of correlations 〈XY 〉 wave-function (DMFT&DMET).

DMET: static correlations (one-particle reduced density matrix blocks) of ground-states.

DMFT: dynamical correlations (Green’s functions blocks) of Hubbard model Gibbs states.

Principle: quantum counterpart of mean-field approach to Ising models. (≈ Domain dec.)

Fixed Decomposition: one-particle Hilbert space (DMET), partition a graph (DMFT).
Given XDM?T a trial solution,

1 Reduce: exponential law and partial trace (DMET), Anderson Impurity Model (DMFT).

2 Solve (easier): finite dimensional problems (DMET), self-energy sparsity pattern (DMFT).

3 Update: low-level map (DMET), bath update map (DMFT).

Self-consistently! ⇐⇒ fixed-point equation.

FDM?T(XDM?T) = XDM?T,
XDMET = D ∈ D (1-RDM)
XDMFT = ∆ ∈ D (Hybridization function)

(2)
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Mathematical challenges with f(x) = x, x ∈ X

(a) No solution: f1 : x 7→ x+ 1
x goes to +∞.

(b) Many solutions: f2 : x 7→ x2

Solutions are x = 0 and x = 1.
(c) Bad solutions: f3 : x 7→ x2 + x+ 1

Solutions are x = ±i (complex!)

Figure: Numerical fixed point problems: fi(x) = x, x ∈ R.

For each of the methods, we address the following mathematical questions:

How many “physical ” solutions are there? In which space (completeness)?

What are their properties? How good is the approximation?
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Second quantization formalism: DMET & DMFT background

Second quantization: C∗-algebra of bounded operators on fermionic Fock space of (H, 〈·, ·〉).

F = P−

(
F̃
)
, F̃ =

⊕
+∞
n=0H⊗n, H⊗n =

n⊗
H, H⊗0 = C, (Fock space, “F = eH”)

P−(φ1 ⊗ . . .⊗ φn) =
1

n!

∑
ε(σ)φσ(1) ⊗ . . .⊗ φσ(n), σ ∈ Sn (Fermions: antisymmetric)

∀φ′ ∈ H, ãφ′
† (φ1 ⊗ . . .⊗ φn) = (

√
n+ 1)φ′ ⊗ φ1 . . .⊗ φn, (Linear in φ′ (creation))

â†φ′ = P−ãφ′
†P−, âφ =

(
â†φ

)†
, ‖â†φ‖ = ‖âφ‖ = ‖φ‖ (Antilin. in φ, bounded)

∀φ, φ′ ∈ H, {âφ, âφ′} = {â†φ, â
†
φ′} = 0, {âφ, â†φ′} = 〈φ, φ′〉 ({A,B} = AB +BA)

Definition (Equilibrium state: average value of observables 〈O〉 = Ω(Ô))

Given Ĥ ∈ S(F), an equilibrium state, with density matrix ρ̂, is a ≥ 0 bounded linear form on

bounded operators Ω : B(F) 3 Ô 7→ Tr(ρ̂Ô), with ρ̂ ∈ S(F), Tr(ρ̂) = 1, [ρ̂, eitĤ ] = 0.
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One-particle reduced density matrices (1-RDM); DMET goal

Includes: ground-states (Ω : Ô 7→ 〈ΨN , ÔΨN 〉, DMET), Gibbs states (ρ̂ = e−βĤ

Z , DMFT).

Definition (One-particle reduced density matrix γΩ: correlation of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) γΩ associated to Ω is the unique self-adjoint
operator in B(H) represented by the sesquilinear form defined by for all φ, φ′ ∈ H,

〈φ, γΩφ
′〉 = Ω

(
â†φ′ âφ

)
. It satisfies 0 ≤ γΩ ≤ 1.

Remark: γ2
Ω = γΩ ⇐⇒ Ω(Ô) = 〈ΨN , ÔΨN 〉 & ΨN = â†φ1

. . . â†φN |∅〉 (Slater state),

In such case, Ran(γΨN ) = Span(φi)i∈[[1,N ]] and Tr(γΨN ) = N .

DMET goal: approximate γΨN ground-state 1-RDM by D Slater 1-RDM (like Hartree-Fock).

γΨN ∈ CH(D) =
{
D† = D, 0 ≤ D ≤ 1, Tr(D) = N

}
(N-particle 1-RDM)

≈DMET D ∈ D =
{
D† = D, D2 = D, Tr(D) = N

}
(Slater like 1-RDM)
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Z , DMFT).

Definition (One-particle reduced density matrix γΩ: correlation of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) γΩ associated to Ω is the unique self-adjoint
operator in B(H) represented by the sesquilinear form defined by for all φ, φ′ ∈ H,

〈φ, γΩφ
′〉 = Ω

(
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Decomposition and high-level map FHL (with accurate solver)

Fixed: orthogonal decomposition of H into ”fragments” H =
⊕Nf

x=1Xx, dim(Xx) = Lx finite
Given D ∈ D matrix, define for each fragment Xx:

1 “Impurity space”: Wx,D = D(Xx) +Xx = D(Xx)⊕(1−D)(Xx).

2 H = Wx,D⊕Henv
x,D =⇒ ρ̂ = ρ̂ΨWx,D

⊗ ρ̂ΨHenv
x,D

in F ' F(Wx,D)⊗F(Henv
x,D), “F = eH”

3 Partial trace,

solve (accurately) “grand-canonical” ground-state problem ⇒ 1-RDM: Pµ,x

Ĥ imp
x,D = TrF(Henv

x,D)((1⊗ ρ̂Henv
x,D

)Ĥ)⇒ inf
Ψimp
x ∈F(Wx,D)

〈Ψimp
x ,

(
Ĥ imp
x,D − µN̂x

)
Ψimp
x 〉,

(N̂x = dΓ(ΠXx): fragment number operator, Πx: orthogonal projector on Xx.)

⇒ FHL(D) =

Nf∑
x=1

ΠxPµ,xΠx =

Π1Pµ,1Π1 0 0

0
. . . 0

0 0 ΠNfPµ,NfΠNf

 , µ s.t. Tr(FHL(D)) = N
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)Ĥ)

⇒ inf
Ψimp
x ∈F(Wx,D)

〈Ψimp
x ,

(
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Low level map F LL (feedback) and DMET equations

By definition, FHL(D) ∈ P = Bd(CH(D)), with Bd(Ô) =
∑Nf
x=1 ΠxÔΠx.

Feedback: given P ∈ P, find a D ∈ D s.t. Bd(D) = P (representability issues [Lemma 2.8]).

For instance, F LL(P ) = argmin
D∈D,Bd(D)=P

EHF(D), EHF(D): Ĥ Hartree-Fock energy functional.

DMET equations: impose self-consistency (define FDMET = F LL ◦ FHL), i.e.{
D = F LL(P ) ∈ D
P = FHL(D) ∈ P ⇐⇒

{
D = FDMET(D), D ∈ D
P = FHL(D) ∈ P.

Mathematical starting point: DMET “is exact in the non-interacting [...] limit” [Knizia, 2012].

Consider Ĥ = dΓ(H0) + ĤI , ĤI : interactions e.g. two-body.
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Feedback: given P ∈ P, find a D ∈ D s.t. Bd(D) = P (representability issues [Lemma 2.8]).

For instance, F LL
α (P ) = argmin

D∈D,Bd(D)=P

EHF
α (D), EHF
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Weakly interacting uniqueness

Proposition 2.1: DMET non-interacting exactness, α = 0

Under the following assumptions on H0 and (Xx)x∈[[1,N ]]:

A1) The one-particle Hamiltonian H0 has an energy gap: εN < 0 < εN+1,

A2) The associated unique ground-state 1-RDM D0 = χR−(H0) satisfies dim(Wx,D0
) = 2Lx,

the 1-RDM D0 is a fixed point of the non-interacting FDMET
0 (nothing ensures it is unique !).

Theorem 2.4: DMET weakly interacting locally unique solution, α small

Under the following extra assumptions on H0 and (Xx)x∈[[1,Nf ]]:

A3) The block-diagonal map Bd is surjective from TD0
D to TF LL

0 (D0)P,

A4) The response function R : TF LL
0 (D0)P → TF LL

0 (D0)P is invertible [Eq. 2.26],

there exists α+ > 0 and a neighborhood ω of D0 in D s.t. for all α ∈ [0, α+),

D = FDMET
α (D), D ∈ ω has a unique solution DDMET

α .
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Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at 0th order

Moreover, α 7→ DDMET
α is real-analytic on [0, α+) and such that DDMET

0 = D0 = χR−(H0).

Proof’s idea: implicit function theorem. “Physical”: shares properties of the exact solution.

Theorem 2.5: DMET is exact up to O(α2)

Under the same assumptions (A1)-(A4), it holds DDMET
α = Dexact

α +O(α2).

(a) H10 molecule and its fragmentation (ST0-6G) (b) First derivative error, w.r.t. α.
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Green’s functions: dynamic correlations ...

Hamiltonian dynamics on a C∗-algebra: strongly continuous one-parameter unitary semigroup.

Heisenberg picture H : Ô 7→ (H(Ô) : t 7→ eitĤÔe−itĤ) (useful: 〈O〉(t) = Ω(H(Ô)(t))).

Definition (One-body time-ordered Green’s function: linear comb. of dynamic correlations)

Given an associated equilibrium state Ω, the one-body time-ordered Green’s function is the
unique bounded-operator-valued map G̃ : R→ B(H) defined by, ∀t ∈ R,∀φ, φ′ ∈ H,

〈φ, (iG̃(t))φ′〉 = χR+
(t)Ω

(
H(âφ)(t)â†φ′

)
︸ ︷︷ ︸

added particle

−χR−(t)Ω
(
â†φ′H(âφ)(t)

)
︸ ︷︷ ︸

added hole

.

Quantum Green’s functions are explicitly defined as dynamic correlations.

Enough for: average energy (Galitskii-Migdal, ĤI two-body), metal/ins. (numerics).

Experimentally “measurable”: in Angle Resolved PhotoEmission Spectroscopy (ARPES).
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â†φ′H(âφ)(t)

)
︸ ︷︷ ︸

added hole

.

Quantum Green’s functions are explicitly defined as dynamic correlations.

Enough for: average energy (Galitskii-Migdal, ĤI two-body), metal/ins. (numerics).
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Green’s functions: ... are Green’s functions if non-interacting.

Non-interacting electrons: Ĥ = dΓ(H0) with H0 ∈ S(H)⇒ H(âφ)(t) = âeitH0φ.

When Green is Green: non-interacting electrons.

In this case, G̃ satisfies in the distribution sense, for all φ ∈ D(H0)
(
i ddt −H

0
)
G̃φ = δ0φ.

Its Generalized Fourier Transform G : C+ → B(H), defined by (C+ = {=(z) > 0})

G(z) = G+(z) +G−(z)†, G+(z) =

∫
R+

eiztG̃(t)dt, G−(z) =

∫
R−

eiztG̃(t)dt.

is well-defined and is the resolvent of H0: for all z ∈ C+, G(z) =
(
z −H0

)−1
.

In general, −G is Nevanlinna-Pick funct.: G(z) =
∫
R

1
z−εdA(ε), A ≥ 0 (B(H)-valued)

dim(H) < +∞: Källen-Lehmann, spectral measure A describes one-body excitations,

〈φ,G(z)φ′〉 =
∑

ψ,ψ′∈B

ρψ + ρψ′

z + (Eψ − Eψ′)
〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉, Ĥψ = Eψψ, ρ̂ψ = ρψψ.
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When Green is Green: non-interacting electrons.

In this case, G̃ satisfies in the distribution sense, for all φ ∈ D(H0)
(
i ddt −H

0
)
G̃φ = δ0φ.

Its Generalized Fourier Transform G : C+ → B(H), defined by (C+ = {=(z) > 0})

G(z) = G+(z) +G−(z)†, G+(z) =

∫
R+

eiztG̃(t)dt, G−(z) =

∫
R−

eiztG̃(t)dt.

is well-defined and is the resolvent of H0: for all z ∈ C+, G(z) =
(
z −H0

)−1
.

In general, −G is Nevanlinna-Pick funct.: G(z) =
∫
R

1
z−εdA(ε), A ≥ 0 (B(H)-valued)

dim(H) < +∞: Källen-Lehmann, spectral measure A describes one-body excitations,

〈φ,G(z)φ′〉 =
∑

ψ,ψ′∈B

ρψ + ρψ′

z + (Eψ − Eψ′)
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Hubbard model: interacting electrons on a graph

(a) Hubbard model on C6.

Analytic solutions:
[Lieb 2001].

Given a finite graph GH = (Λ, E), the Fock space is

FH =
⊗
i∈Λ

F1, F1 = Span(|0〉, |↑〉, |↓〉, |↑↓〉).

Given a hopping matrix T : E → R and an on-site
repulsion U : Λ→ R, the Hamiltonian is

ĤH = Ĥ0 + ĤI ∈ S(FH), with

Ĥ0 =
∑
{i,j}∈E
σ=↑,↓

Ti,j

(
â†i,σâj,σ + â†j,σâi,σ

)
,

ĤI =
∑
i∈Λ

Uin̂i,↑n̂i,↓, n̂i,σ = â†i,σâi,σ.
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Anderson Impurity Model (AIM): an embedded Hubbard model

(a) AIM with GH = C4 and B = 5.

Given B ∈ N a bath dimension,

FAIM = FH ⊗Fbath, Fbath =

B⊗
i=1

F1

Given bath levels ε : [[1, B]]→ R and a
coupling V : [[1, B]]× Λ→ R,

ĤAIM = ĤH + Ĥ0
bath + Ĥ0

int, with

Ĥ0
bath =

∑
k∈[[1,B]]

εk (n̂k,↑ + n̂k,↓) ,

Ĥ0
int =

∑
k∈[[1,B]]
i∈Λ,σ=↑,↓

Vk,i

(
â†k,σâi,σ + â†i,σâk,σ

)
.

Alfred Kirsch Mathematics of quantum embedding methods 23 / 32



Self-energy and hybridization functions

For finite dimensional systems, assuming Ĥ = dΓ(H0) + ĤI , (Hubbard and AIM),

Definition (Self-energy: Σ s.t. G(z) =
(
z − (H0 + Σ(z)

)−1
(local non-interacting picture))

Given Ω, the self-energy is the unique bounded operators Σ : C+ → B(H) defined by, ∀z ∈ C+,

Σ(z) =
(
G0(z)

)−1 −G(z)−1 = z −H0 −G(z)−1 (−Σ is Nevanlinna-Pick.)

Definition (Hybridization: ∆ s.t. G0(z)imp =
(
z − (H0

imp + ∆(z))
)−1

(local isolated picture))

For an AIM, H = Himp ⊕H⊥imp, the hybridization function ∆ : C+ → B(Himp is defined by

∆(z) = z −H0
imp −

(
G0(z)imp

)−1
(Schur complement). (−∆ is Nevanlinna-Pick)

DMFT foundation: sparsity pattern and impurity solver [Lin, Lindsey 2019], [Proposition 3.2.8]

Given an AIM (GH , T, U,B, ε, V), ΣAIM = Σimp ⊕ 0 and Σimp = ImpSolvGH ,T,U,Ω(∆).
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Dynamical Mean-Field Theory (DMFT) equations

DMFT goal: G associated to Gibb’s states ρ̂ = 1
Z e
−β(Ĥ−µN̂) of Hubbard (GH = (Λ, E), T, U)

DMFT principle: approximate using many but simpler (Gi)i∈[[1,|P|]] of Gibb’s states of AIM.

DMFT equations:

Gi,imp(∆i) = GDMFT,i

G−1
DMFT = G0,−1

H − ΣDMFT

ΣDMFT =

|P|⊕
i=1

Σi,imp

Σi,imp = ImpSolvi(∆i)

DMFT parameters (fixed):

1 Partition P = (Λi)i∈[[1,|Λ|]] of Λ. Our work: singletons.

2 Approximation of ImpSolv (' DFT universal functional). Our work: IPT
approximation.
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The Iterated Perturbation Theory (IPT) impurity solver (vanilla)

Freq. used in physics.

2nd order pert. in U .

Figure: [Georges 2016].

Assumptions: single-site translation-invariant paramagnetic DMFT (half-filling)

Assume that |P| = |Λ| and (GH , T, U) is a (weighted) vertex-transitive graph.
Restrict to solutions ∀i ∈ P, −∆i = −∆ : C+ → C+, −Σi,imp = −Σ : C+ → C+.

IPTβ(U ∈ R,∆): defined in Matsubara’s formalism, temperature 1/β, analytic continuation:

Find Σ analytic s.t. =(−Σ) ≥ 0 (Nevanlinna-Pick function) and ∀n ∈ N, Σ(iωn) = ΣIPT
n ,

with ωn =
(2n+ 1)π

β
, ΣIPT

n = U2

∫ β

0

eiωnτ (
1

β

∑
n′∈Z

e−iωn′τ (iωn′ −∆(iωn′))
−1

)3dτ.
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Non-existence of finite dimensional solution

∆(z) = W
(
z −H0

⊥ − Σ(z)
)−1

W †

= BUGH ,T(Σ(z)) ⇐⇒ ∆ = FDMFT(∆),∆ ∈ D?

Σ = IPTβ(U,∆)

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

For an AIM, ∆(z) =
∑
k=1

|Vk|2

z − εk
. For ∆ ∈ Ran(BUGH ,T),

B∑
k=1

|Vk|2 = WW † ∈ R.

Try: D = Df = WW †S (P(R) ∩ {supp(µ) fin.}) , Sµ(z) =

∫
dµ(ε)

z − ε
(Stieljes transform).

Proposition (Well-def.: BU[Lindsey 2019], IPT[Prop. 3.2.18]; non-∃ of solution [Prop. 3.3.5])

BU : Sf → Df , IPT : Df → Sf are well-defined w. Sf = S(M+(R) ∩ {supp(µ) fin})
Apart from strictly/non interacting cases, DMFT = BU ◦ IPT has no fixed point in Df .
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Extension of domain and existence

Extension: D = WW †S(P(R)), S = S(M+(R))

Physics:“Infinite” dimensional bath. Mathematics: measure analysis (up to S,S−1).

[Propositions 3.3.6-3.3.8], BU and IPT for infinite dimensional bath

BU : D→ S is well-defined. IPT admits a unique continuous extension D→ S for the
Kantorovich-Rubinstein distance.

Main theorem ([Theorem 3.3.9], [Proposition 3.3.10])

DMFT admits a fixed point in D. Any fixed point admits fin. moments up to any order.

Proof (with measures).

DMFT : µ with k-moments 7→ k + 4 moments (compactness) and weakly continuous.
Schauder(-Singbal) fixed-point theorem on P(R) (completeness).
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Numerical results: Mott transition (Matsubara discretized)

Figure: Spectral function ρ (a.k.a. A): analytic continuation results for the Hubbard dimer (β = 1).
Metallic criteria: ρ(0) > 0 (TRIQS simulations).
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Concluding table

DMFT DMET

General framework

Equilibrium state Gibbs state, ρ̂ = e−β(Ĥ−µN̂)/Z Ground state, ρ̂ proj. onto Ψ
Reduced quantity Green’s function G (Pick function) 1-RDM D (self-adjoint)
Model of interest Hubbard model (GH = (Λ, E), T, U) Any finite dimensional

Decomposition of H DMFT partition P of Λ ⊥ decomposition ⊕xXx

Mean-field model Collection of AIMs Collection of (Wx,D, Ĥ
imp
x,D)

Bath dimension Infinite (non-interacting) dim(Wx,D) = 2 dim(Xx)
Impurity step Impurity solver ∆ 7→ Σ (IPT here) High-level FHL : D 7→ P

Self-consistency Bath Update map Σ 7→ ∆ Low-level FLL : P 7→ D

Mathematical results on self-consistent equations in this thesis

Existence Global , conditional Chapter 4 Near α = 0, under (A1)-(A4)
Uniqueness Trivial limits , locally Chapter 4 Near α = 0, locally
Exactness Trivial limits First order in α, near α = 0

Table: Overview table of the main features of DMFT and DMET from the perspective of this thesis.
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Perspectives

Regarding DMET:

Strictly interacting setting (already started by Cancès, Faulstich et al.).

Mathematics of the finite-temperature extension
Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

Regarding DMFT:

Preliminary results: numerical analysis Matsubara discretized scheme, new numerical
scheme and particle-hole symmetry condition.

Uniqueness to the IPT-DMFT equations.

Soon: Impurity solver well-posedness (easier setting to study quantum Luttinger-Ward
functional formalism [Lin, Lindsey 2021]) and higher order solvers (CTQMC).

Later: thermodynamic limits, ”d =∞” exactness [Metzner, Vollhardt 1989].
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Numerical results: DMET assumptions’ test on H6.

(a) H6 molecule, with Θ varying. (b) A3 & A4 assumptions, with Θ varying.

Figure: Numerical test of assumptions A3 & A4 on H6 molecule.
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Numerical results: DMET VS Hartree-Fock

(a) ‖∂2αPα
∣∣
α=0
‖F for HF, DMET and FCI (b) ‖∂2αDα

∣∣
α=0
‖F for HF, DMET and FCI

Figure: Numerical tests for H6 molecule, with varying Θ.
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Matsubara’s frequencies discretized IPT-DMFT equations

Definition (Matsubara discretized scheme)

Given Nω ∈ N a Matsubara’s frequencies cutoff, solve for all n ∈ [[0, Nω]],

∆n = W
(
iωn −H0

⊥ − Σn
)−1

W † (3)

Σn = U2

∫ β

0

eiωnτ

 1

β

Nω∑
n′=−(Nω+1)

e−iωn′τ (iωn′ −∆n′)
−1

3

dτ (4)

with −∆ = (−∆n)n∈[[0,Nω]] ,−Σ = (−Σn)n∈[[0,Nω]] ⊂ C+
Nω+1

.

Looks similar: completely different strategy (and results !), no Nevanlinna-Pick functions.
→ Non-physical solutions exist (and are exhibited !).
Only conditional existence, but uniqueness result (also conditional, finite dimensional).
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Theoretical results: conditional existence

RNω = sup
{
R ∈ R+ s.t. ∀z ∈ B(0, R) ∩ C+

Nω+1
,∀n ∈ [[0, Nω]], = (Fn,Nω (z)) ≤ 0

}
, (5)

where Fn,Nω (z) =

Nω∑
n1,n2,n3=−(Nω+1)
n1+n2+n3=n−1

3∏
i=1

(i(2ni + 1)/π + zni)
−1
. (6)

Theorem 4.2.1: Existence of solution

The critical radius RNω is well-defined and > 0. Moreover, ∀β ∈ R∗+, W † ∈ RL−1 satisfying

β‖W‖2 ≤
√

2
√

2RNω , (7)

and ∀U ∈ R, (3) & (4) admit a solution (∆,Σ) ∈ Dβ,Nω ×Sβ,Nω,U where

Dβ,Nω = B(0, RNω/β) ∩
(
−C+

Nω+1
)
, Sβ,Nω,U = IPTNω (Dβ,Nω ).
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Theoretical results: conditional uniqueness

LNω = max
n∈[[0,Nω]]

LipC+
(Fn,Nω ). (8)

Theorem 4.2.2: Uniqueness of solution

For all Nω ∈ N, β ∈ R∗+, W † ∈ RL−1, U ∈ R satisfying with the previous assumption and(
β2‖W‖2U

π

)2

LNω < 1,

the discretized IPT-DMFT equations (3) (4) admits a unique solution in Dβ ×Sβ,Nω,U .
Moreover, the fixed point algorithm sequence

(
∆(n)

)
n∈N

∆(0) ∈ Dβ , ∀n ∈ N, ∆(n+1) = DMFTNω (∆(n))

converges linearly toward this solution.
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Numerical results: Matsubara discretized, Hubbard dimer.

Figure: Residual ‖∆(n+1) −∆(n)‖2 in log scale, for n ∈ [[0, Niter]], β = 1 (top), β = 10 (bottom).
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Preliminary results: new numerical scheme for IPT-DMFT

Solutions: measures with finite moments up to any order: show it numerically?
New “exact diagonalization”-truncation num. scheme. without num. analytic continuation.

(a) Nevanlinna-Pick measure of ∆ (b) Nevanlinna-Pick measure of ∆ (log scale)

Figure: New ED-truncation scheme results, U = 4, β = 0, Hubbard dimer.

Suggests measure is exponentially decreasing: would prove uniqueness of the solution!
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Preliminary results: particle-hole symmetry (Coulson Rushbrooke)

Hubbard: particle-hole symmetry ⇐⇒ GH is bipartite [Bach, Solovej, Lieb 1994] (76 “sym”)

(a) Matsubara discretized (b) New ED-truncation scheme

Theorem (translation invariant IPT-DMFT particle-hole symmetry condition)

Given ν an IPT-DMFT fixed point: ν is symmetric ⇐⇒ GH is bipartite.

Proof: for now, β = 0 only.
Alfred Kirsch Mathematics of quantum embedding methods 8 / 8
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