Mathematical and numerical analysis of embedding methods in quantum mechanics

PhD defense - November 18 2024

Alfred Kirsch CERMICS (ENPC) & MATHERIALS (INRIA) supervision: É. Cancès (CERMICS) & D. Gontier (CEREMADE)

Experiment in pictures

(a) Pouring liquid nitrogen (white fumes).

(b) Magnet (gray) flies over the (black) pastil.

Figure: Levitation experiment (students: A. Barthélemy (exp.), K. Chikhaoui (pictures)).

Fact: the magnet levitates above the black knob at low temperatures.

Fact: the magnet levitates above the black knob at low temperatures. Why?

Fact: the magnet levitates above the black knob at low temperatures. Why?

• Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K \ (\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T = 77K \ (\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K \ (\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T = 77K \ (\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

(a) Discovery: 1986 by J. G. Bednorz & K. A. Müller.

(b) Nobel: 1987 (1 year after!)

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K \ (\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T = 77K \ (\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: unconventional mechanism, due to electron correlation (hard problem).

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K~(\approx -250^{\circ}\text{C}) Experiment: boiling liquid nitrogen T=77K~(\approx -200^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: *unconventional* mechanism, due to electron *correlation* (hard problem). **Embedding methods**: *approximate* **computations** for materials with strong correlations.

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K~(\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T=77K~(\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: *unconventional* mechanism, due to electron *correlation* (hard problem). **Embedding methods**: *approximate* **computations** for materials with strong correlations. **Subject of this thesis**: **mathematical** *and numerical* properties of two of these methods.

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K~(\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T=77K~(\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: *unconventional* mechanism, due to electron *correlation* (hard problem). **Embedding methods**: *approximate* **computations** for materials with strong correlations. **Subject of this thesis**: **mathematical** *and numerical* properties of two of these methods.

Quantum chemistry: Density Matrix Embedding Theory (DMET, since 2010's)
 [Knizia, Chan 2012 & 2013], [Wouters, al. 2016], [Wu, al. 2020], [Faulstich, al. 2022].

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K~(\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T=77K~(\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: *unconventional* mechanism, due to electron *correlation* (hard problem). **Embedding methods**: *approximate* **computations** for materials with strong correlations. **Subject of this thesis**: **mathematical** *and numerical* properties of two of these methods.

- Quantum chemistry: Density Matrix Embedding Theory (DMET, since 2010's)
 [Knizia, Chan 2012 & 2013], [Wouters, al. 2016], [Wu, al. 2020], [Faulstich, al. 2022].
- Condensed matter physics: **Dynamical Mean-Field Theory** (DMFT, since 1990's) [Metzner, Vollhardt 1989], [Georges, Kotliar 1992], [Georges, al. 1996], [Kotliar, al. 2001].

Fact: the magnet levitates above the black knob at low temperatures. Why?

- Levitation: due to Meissner-Ochsenfeld effect, consequence of superconductivity.
- Superconductivity: exists for temperature $T \leq T_c$ (critical temperature of the material).

```
Conventional theory (BCS) predicts T_c \leq 20K~(\approx -250 \, ^{\circ}\text{C}) Experiment: boiling liquid nitrogen T=77K~(\approx -200 \, ^{\circ}\text{C}) Abnormally "hot"
```

"High T_c superconductor": yttrium, barium, copper, oxygen (YBCO).

Actual paradigm: *unconventional* mechanism, due to electron *correlation* (hard problem). **Embedding methods**: *approximate* **computations** for materials with strong correlations. **Subject of this thesis**: **mathematical** *and numerical* properties of two of these methods.

- Quantum chemistry: Density Matrix Embedding Theory (DMET, since 2010's)
 [Knizia, Chan 2012 & 2013], [Wouters, al. 2016], [Wu, al. 2020], [Faulstich, al. 2022].
- Condensed matter physics: Dynamical Mean-Field Theory (DMFT, since 1990's)
 [Metzner, Vollhardt 1989], [Georges, Kotliar 1992], [Georges, al. 1996], [Kotliar, al. 2001].

In short: Mathematics of two methods that could explain levitation at T=77K.

Outline

- Embedding methods in quantum mechanics
 - Why (not) quantum mechanics ?
 - Overview of embedding methods
- Density Matrix Embedding Theory (DMET)
 - Reduced density matrices and DMET setting
 - Main results and numerical evidences
- Oynamical Mean-Field Theory (DMFT)
 - Green's functions, Hubbard and Anderson Impurity Model
 - Mathematical (and numerical) results
- 4 Conclusion and perspectives

Outline

- Embedding methods in quantum mechanics
 - Why (not) quantum mechanics ?
 - Overview of embedding methods
- 2 Density Matrix Embedding Theory (DMET)
 - Reduced density matrices and DMET setting
 - Main results and numerical evidences
- Dynamical Mean-Field Theory (DMFT)
 - Green's functions, Hubbard and Anderson Impurity Model
 - Mathematical (and numerical) results
- 4 Conclusion and perspectives

Matter under microscope

Figure: A pencil under microscope: atoms are the building blocks of matter.

- Matter: arrangement (molecules, crystals, etc.) of atoms (carbon, oxygen, etc.).
- Any phenomenon: consequence of the properties of (many) atoms (statistical physics).
- Properties of atoms: counterintuitive, described by quantum mechanics.

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- ullet A **nucleus**, \oplus charged, very heavy.
- Many identical **electrons** (6 for carbon, 8 for oxygen), ⊖ charged, light.

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- A **nucleus**, \oplus charged, very heavy. **Fixed** (Born-Oppenheimer approximation).
- Many identical **electrons** (6 for carbon, 8 for oxygen), ⊖ charged, light. **Moving**.

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- A **nucleus**, \oplus charged, very heavy. **Fixed** (Born-Oppenheimer approximation).
- Many identical electrons (6 for carbon, 8 for oxygen), ⊖ charged, light. Moving.

Problem: we can't see electrons, we can only measure them (energy, position).

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- A **nucleus**, \oplus charged, very heavy. **Fixed** (Born-Oppenheimer approximation).
- Many identical electrons (6 for carbon, 8 for oxygen), ⊖ charged, light. Moving.

Problem: we can't see electrons, we can only measure them (energy, position).

• Results can be **random**: one experiment \rightarrow many results! **Probabilistic**.

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- A **nucleus**, \oplus charged, very heavy. **Fixed** (Born-Oppenheimer approximation).
- Many identical electrons (6 for carbon, 8 for oxygen),
 ⊖ charged, light. Moving.

Problem: we can't see electrons, we can only measure them (energy, position).

- Results can be **random**: one experiment \rightarrow many results! **Probabilistic**.
- Results can be **quantized**: **discrete** values, "0 or 1, not 0.5" (**energy**, measured by **light**).

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- A **nucleus**, \oplus charged, very heavy. **Fixed** (Born-Oppenheimer approximation).
- Many identical electrons (6 for carbon, 8 for oxygen), ⊖ charged, light. Moving.

Problem: we can't see electrons, we can only measure them (energy, position).

- Results can be **random**: one experiment \rightarrow many results! **Probabilistic**.
- Results can be **quantized**: **discrete** values, "0 or 1, not 0.5" (**energy**, measured by **light**).

(a) Some tower at night.

All atoms are made of smaller particles, bound by electric forces $(\oplus \rightarrow \leftarrow \ominus, \ominus \leftrightsquigarrow \ominus)$

- A **nucleus**, \oplus charged, very heavy. **Fixed** (Born-Oppenheimer approximation).
- Many identical electrons (6 for carbon, 8 for oxygen), ⊖ charged, light. Moving.

Problem: we can't see electrons, we can only measure them (energy, position).

- Results can be **random**: one experiment \rightarrow many results! **Probabilistic**.
- Results can be **quantized**: **discrete** values, "0 or 1, not 0.5" (**energy**, measured by **light**).

(a) Some tower at night.

(b) Orange lightning: sodium lamp and its spectrum.

Figure: Quantization of energy in cities lightning system.

Quantum mechanics in (small) atoms

Quantum mechanics gives an explanation, using a precise mathematical theory:

- Probabilistic aspects: modeled by the wavefunction $\Psi: x \mapsto \Psi(x)$. $x \mapsto |\Psi(x)|^2$: probability to find the electron near x.
- Quantized aspects: modeled by the Hamiltonian $\hat{H}: \Psi \mapsto \hat{H}\Psi$. E can be measured \Rightarrow exists a solution to the Schrödinger equation.

$$\hat{H}\Psi = E\Psi, \quad E \in \mathbb{R}$$
 (1)

(a) Sodium emission spectrum: an 11-interacting-electron problem.

(b) Levitation with YBCO.

(c) Unit cell of YBCO

Problem: Schrödinger equation is *very hard* to solve explicitly for large & interacting systems.

• Analytically: general properties of the solution (e.g. spectral theory).

(a) Sodium emission spectrum: an 11-interacting-electron problem.

(b) Levitation with YBCO.

(c) Unit cell of YBCO

Problem: Schrödinger equation is *very hard* to solve explicitly for large & interacting systems.

- Analytically: general properties of the solution (e.g. spectral theory).
- ullet Numerically: high dimensional (3N) partial differential equation (e.g. too large for FEM).

(a) Sodium emission spectrum: an 11-interacting-electron problem.

(b) Levitation with YBCO.

(c) Unit cell of YBCO

Problem: Schrödinger equation is *very hard* to solve explicitly for large & interacting systems.

- Analytically: general properties of the solution (e.g. spectral theory).
- ullet Numerically: high dimensional (3N) partial differential equation (e.g. too large for FEM).

Solution: find a "good" approximation ("good": problem dependent \Rightarrow many of them).

(a) Sodium emission spectrum: an 11-interacting-electron problem.

(b) Levitation with YBCO.

(c) Unit cell of YBCO

Problem: Schrödinger equation is *very hard* to solve explicitly for large & interacting systems.

- Analytically: general properties of the solution (e.g. spectral theory).
- ullet Numerically: high dimensional (3N) partial differential equation (e.g. too large for FEM).

Solution: find a "good" approximation ("good": problem dependent \Rightarrow many of them).

• Reduce to one-electron models: mean-field Hamiltonians, Hartree-Fock, (TD)DFT etc.

(a) Sodium emission spectrum: an 11-interacting-electron problem.

(b) Levitation with YBCO.

(c) Unit cell of YBCO

Problem: Schrödinger equation is *very hard* to solve explicitly for large & interacting systems.

- Analytically: general properties of the solution (e.g. spectral theory).
- ullet Numerically: high dimensional (3N) partial differential equation (e.g. too large for FEM).

Solution: find a "good" approximation ("good": problem dependent \Rightarrow many of them).

- Reduce to one-electron models: mean-field Hamiltonians, Hartree-Fock, (TD)DFT etc.
- Reduce to smaller but interacting systems: embedding methods, e.g. DMFT, DMET.

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

• DMET: **static** correlations (one-particle reduced density matrix *blocks*) of ground-states.

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

- DMET: **static** correlations (one-particle reduced density matrix *blocks*) of ground-states.
- DMFT: dynamical correlations (Green's functions blocks) of Hubbard model Gibbs states.

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

- DMET: **static** correlations (one-particle reduced density matrix *blocks*) of ground-states.
- DMFT: dynamical correlations (Green's functions blocks) of Hubbard model Gibbs states.

Principle: quantum counterpart of *mean-field* approach to Ising models. (\approx **Domain dec.**)

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

- DMET: static correlations (one-particle reduced density matrix blocks) of ground-states.
- DMFT: dynamical correlations (Green's functions blocks) of Hubbard model Gibbs states.

Principle: quantum counterpart of *mean-field* approach to Ising models. (\approx **Domain dec.**)

Fixed Decomposition: one-particle Hilbert space (DMET), partition a graph (DMFT). Given $X_{\text{DM},T}$ a trial solution,

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

- DMET: static correlations (one-particle reduced density matrix blocks) of ground-states.
- DMFT: dynamical correlations (Green's functions blocks) of Hubbard model Gibbs states.

Principle: quantum counterpart of *mean-field* approach to Ising models. (\approx **Domain dec.**)

- Fixed Decomposition: one-particle Hilbert space (DMET), partition a graph (DMFT). Given X_{DM7T} a trial solution,
 - Reduce: exponential law and partial trace (DMET), Anderson Impurity Model (DMFT).

Embedding methods: approximate computation of correlations

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

- DMET: **static** correlations (one-particle reduced density matrix *blocks*) of ground-states.
- DMFT: dynamical correlations (Green's functions blocks) of Hubbard model Gibbs states.

Principle: quantum counterpart of *mean-field* approach to Ising models. (\approx **Domain dec.**)

- Fixed Decomposition: one-particle Hilbert space (DMET), partition a graph (DMFT). Given X_{DM7T} a trial solution,
 - Reduce: exponential law and partial trace (DMET), Anderson Impurity Model (DMFT).
 - Solve (easier): finite dimensional problems (DMET), self-energy sparsity pattern (DMFT).

Embedding methods: approximate computation of correlations

Goal: compute **directly** an approx. of **correlations** $\langle XY \rangle$ wave-function (DMFT&DMET).

- DMET: **static** correlations (one-particle reduced density matrix *blocks*) of ground-states.
- DMFT: **dynamical** correlations (Green's functions *blocks*) of Hubbard model Gibbs states.

Principle: quantum counterpart of *mean-field* approach to Ising models. (\approx **Domain dec.**)

Fixed Decomposition: one-particle Hilbert space (DMET), partition a graph (DMFT). Given $X_{\text{DM},T}$ a trial solution,

- Reduce: exponential law and partial trace (DMET), Anderson Impurity Model (DMFT).
- Solve (easier): finite dimensional problems (DMET), self-energy sparsity pattern (DMFT).
- Update: low-level map (DMET), bath update map (DMFT).

Self-consistently! \iff fixed-point equation.

$$F^{\text{DM?T}}(X_{\text{DM?T}}) = X_{\text{DM?T}}, \qquad \begin{array}{c} X_{\text{DMET}} = D \in \mathcal{D} & \text{(1-RDM)} \\ X_{\text{DMFT}} = \Delta \in \mathfrak{D} & \text{(Hybridization function)} \end{array} \tag{2}$$

Mathematical challenges with f(x) = x, $x \in X$

x goes to $+\infty$.

Figure: Numerical fixed point problems: $f_i(x) = x, \quad x \in \mathbb{R}$.

For each of the methods, we address the following mathematical questions:

- How many "physical" solutions are there? In which space (completeness)?
- What are their properties? How good is the approximation?

Solutions are x = 0 and x = 1. Solutions are $x = \pm i$ (complex!)

Outline

- Embedding methods in quantum mechanics
 - Why (not) quantum mechanics ?
 - Overview of embedding methods
- Density Matrix Embedding Theory (DMET)
 - Reduced density matrices and DMET setting
 - Main results and numerical evidences
- Oynamical Mean-Field Theory (DMFT)
 - Green's functions, Hubbard and Anderson Impurity Model
 - Mathematical (and numerical) results
- 4 Conclusion and perspectives

Second quantization formalism: DMET & DMFT background

Second quantization: C^* -algebra of **bounded** operators on fermionic Fock space of $(\mathcal{H}, \langle \cdot, \cdot \rangle)$.

$$\mathcal{F} = P_{-}\left(\tilde{\mathcal{F}}\right), \quad \tilde{\mathcal{F}} = \bigoplus_{n=0}^{+\infty} \mathcal{H}^{\otimes n}, \quad \mathcal{H}^{\otimes n} = \bigotimes^{n} \mathcal{H}, \quad \mathcal{H}^{\otimes 0} = \mathbb{C}, \quad \text{(Fock space, "}\mathcal{F} = e^{\mathcal{H}"}\text{)}$$

$$P_{-}(\phi_{1} \otimes \ldots \otimes \phi_{n}) = \frac{1}{n!} \sum_{\boldsymbol{\epsilon}} \boldsymbol{\epsilon}(\boldsymbol{\sigma}) \phi_{\boldsymbol{\sigma}(1)} \otimes \ldots \otimes \phi_{\boldsymbol{\sigma}(n)}, \boldsymbol{\sigma} \in \mathfrak{S}_{n} \text{ (Fermions: antisymmetric)}$$

$$\forall \phi' \in \mathcal{H}, \quad \tilde{a}_{\phi'}^{\dagger} \left(\phi_{1} \otimes \ldots \otimes \phi_{n}\right) = \left(\sqrt{n+1}\right) \phi' \otimes \phi_{1} \ldots \otimes \phi_{n}, \quad \text{(Linear in } \phi' \text{ (creation))}$$

$$\hat{a}_{\phi'}^{\dagger} = P_{-} \tilde{a}_{\phi'}^{\dagger} P_{-}, \quad \hat{a}_{\phi} = \left(\hat{a}_{\phi}^{\dagger}\right)^{\dagger}, \quad \|\hat{a}_{\phi}^{\dagger}\| = \|\hat{a}_{\phi}\| = \|\boldsymbol{\phi}\| \quad \text{(Antilin. in } \phi, \text{ bounded)}$$

$$\forall \phi, \phi' \in \mathcal{H}, \quad \{\hat{a}_{\phi}, \hat{a}_{\phi'}\} = \{\hat{a}_{\phi}^{\dagger}, \hat{a}_{\phi'}^{\dagger}\} = 0, \quad \{\hat{a}_{\phi}, \hat{a}_{\phi'}^{\dagger}\} = \langle \phi, \phi' \rangle \qquad (\{A, B\} = AB + BA)$$

Definition (Equilibrium state: average value of observables $\langle O \rangle = \Omega(\hat{O})$)

Given $\hat{H} \in \mathcal{S}(\mathcal{F})$, an equilibrium **state**, with *density matrix* $\hat{\rho}$, is a ≥ 0 bounded **linear form** on bounded operators $\Omega: B(\mathcal{F}) \ni \hat{O} \mapsto \mathrm{Tr}(\hat{\rho}\hat{O})$, with $\hat{\rho} \in \mathcal{S}(\mathcal{F})$, $\mathrm{Tr}(\hat{\rho}) = 1$, $[\hat{\rho}, e^{it\hat{H}}] = 0$.

Includes: ground-states ($\Omega: \hat{O} \mapsto \langle \Psi_N, \hat{O}\Psi_N \rangle$, DMET), Gibbs states ($\hat{\rho} = \frac{e^{-\hat{\rho}\hat{H}}}{Z}$, DMFT).

Includes: ground-states ($\Omega: \hat{O} \mapsto \langle \Psi_N, \hat{O}\Psi_N \rangle$, DMET), Gibbs states ($\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Z}$, DMFT).

Definition (One-particle reduced density matrix γ_{Ω} : **correlation** of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) γ_{Ω} associated to Ω is the unique **self-adjoint operator** in $B(\mathcal{H})$ represented by the **sesquilinear form** defined by for all $\phi, \phi' \in \mathcal{H}$,

$$\langle \phi, \gamma_{\Omega} \phi' \rangle = \Omega \left(\hat{a}_{\phi'}^{\dagger} \hat{a}_{\phi} \right).$$
 It satisfies $0 \leq \gamma_{\Omega} \leq 1$.

Includes: ground-states ($\Omega: \hat{O} \mapsto \langle \Psi_N, \hat{O}\Psi_N \rangle$, DMET), Gibbs states ($\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Z}$, DMFT).

Definition (One-particle reduced density matrix γ_{Ω} : **correlation** of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) γ_{Ω} associated to Ω is the unique **self-adjoint operator** in $B(\mathcal{H})$ represented by the **sesquilinear form** defined by for all $\phi, \phi' \in \mathcal{H}$,

$$\langle \phi, \gamma_{\Omega} \phi' \rangle = \Omega \left(\hat{a}_{\phi'}^{\dagger} \hat{a}_{\phi} \right).$$
 It satisfies $0 \leq \gamma_{\Omega} \leq 1$.

Remark: $\gamma_{\Omega}^2 = \gamma_{\Omega} \iff \Omega(\hat{O}) = \langle \Psi_N, \hat{O}\Psi_N \rangle$ & $\Psi_N = \hat{a}_{\phi_1}^{\dagger} \dots \hat{a}_{\phi_N}^{\dagger} |\emptyset\rangle$ (Slater state), In such case, $\operatorname{Ran}(\gamma_{\Psi_N}) = \operatorname{Span}(\phi_i)_{i \in [\![1,N]\!]}$ and $\operatorname{Tr}(\gamma_{\Psi_N}) = N$.

Includes: ground-states $(\Omega : \hat{O} \mapsto \langle \Psi_N, \hat{O}\Psi_N \rangle, \text{ DMET})$, Gibbs states $(\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Z}, \text{ DMFT})$.

Definition (One-particle reduced density matrix γ_{Ω} : **correlation** of creation/annihilation pairs)

The one-particle reduced density matrix (1-RDM) γ_{Ω} associated to Ω is the unique **self-adjoint operator** in $B(\mathcal{H})$ represented by the **sesquilinear form** defined by for all $\phi, \phi' \in \mathcal{H}$,

$$\langle \phi, \gamma_{\Omega} \phi' \rangle = \Omega \left(\hat{a}_{\phi'}^{\dagger} \hat{a}_{\phi} \right).$$
 It satisfies $0 \leq \gamma_{\Omega} \leq 1$.

 $\text{Remark: } \gamma_{\Omega}^2 = \gamma_{\Omega} \iff \Omega(\hat{O}) = \langle \Psi_N, \hat{O}\Psi_N \rangle \quad \& \quad \Psi_N = \hat{a}_{\phi_1}^{\dagger} \dots \hat{a}_{\phi_N}^{\dagger} |\emptyset\rangle \quad \text{(Slater state),}$

In such case, $\operatorname{Ran}(\gamma_{\Psi_N}) = \operatorname{Span}(\phi_i)_{i \in \llbracket 1, N \rrbracket}$ and $\operatorname{Tr}(\gamma_{\Psi_N}) = N$.

DMET goal: approximate γ_{Ψ_N} ground-state 1-RDM by D Slater 1-RDM (like Hartree-Fock).

$$\gamma_{\Psi_N} \in \mathrm{CH}(\mathcal{D}) = \left\{ D^\dagger = D, \quad 0 \leq D \leq 1, \quad \mathrm{Tr}(D) = N \right\} \tag{N-particle 1-RDM}$$

$$pprox_{\mathsf{DMET}}\ D \in \mathcal{D} = \left\{D^\dagger = D, \quad D^2 = D, \quad \mathrm{Tr}(D) = N\right\}$$
 (Slater like 1-RDM)

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

• "Impurity space": $W_{x,D} = D(X_x) + X_x = D(X_x) \oplus (1-D)(X_x)$.

Figure: DMET mapping principle. Assumption: $\dim(W_{x,D}) = 2L_x$ (maximal).

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

- $\bullet \text{ "Impurity space"} \colon W_{x,D} = D(X_x) + X_x = D(X_x) \oplus (1-D)(X_x).$
- $\textcircled{2} \ \mathcal{H} = W_{x,D} \oplus \mathcal{H}_{x,D}^{\mathrm{env}} \implies \boxed{ \hat{\rho} = \hat{\rho}_{\Psi_{W_{x,D}}} \otimes \hat{\rho}_{\Psi_{\mathcal{H}_{x,D}^{\mathrm{env}}}} } \text{ in } \mathcal{F} \simeq \mathcal{F}(W_{x,D}) \otimes \mathcal{F}(\mathcal{H}_{x,D}^{\mathrm{env}}), \ "\mathcal{F} = \mathbf{e}^{\mathcal{H}}"$

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

- $\bullet \text{ "Impurity space"} \colon W_{x,D} = D(X_x) + X_x = D(X_x) \oplus (1-D)(X_x).$
- $\textcircled{2} \ \mathcal{H} = W_{x,D} \oplus \mathcal{H}_{x,D}^{\mathsf{env}} \implies \boxed{ \hat{\rho} = \hat{\rho}_{\Psi_{W_{x,D}}} \otimes \hat{\rho}_{\Psi_{\mathcal{H}_{x,D}^{\mathsf{env}}}} } \text{ in } \mathcal{F} \simeq \mathcal{F}(W_{x,D}) \otimes \mathcal{F}(\mathcal{H}_{x,D}^{\mathsf{env}}), \ "\mathcal{F} = \mathbf{e}^{\mathcal{H}}"$
- Partial trace,

$$\hat{H}_{x,D}^{\mathsf{imp}} = \mathrm{Tr}_{\mathcal{F}(\mathcal{H}_{x,D}^{\mathsf{env}})}((\mathbf{1} \otimes \hat{\rho}_{\mathcal{H}_{x,D}^{\mathsf{env}}})\hat{H})$$

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

- $\bullet \text{ "Impurity space"} \colon W_{x,D} = D(X_x) + X_x = D(X_x) \oplus (1-D)(X_x).$
- $\textcircled{2} \ \mathcal{H} = W_{x,D} \oplus \mathcal{H}_{x,D}^{\mathsf{env}} \implies \boxed{ \hat{\rho} = \hat{\rho}_{\Psi_{W_{x,D}}} \otimes \hat{\rho}_{\Psi_{\mathcal{H}_{x,D}^{\mathsf{env}}}} } \text{ in } \mathcal{F} \simeq \mathcal{F}(W_{x,D}) \otimes \mathcal{F}(\mathcal{H}_{x,D}^{\mathsf{env}}), \ "\mathcal{F} = e^{\mathcal{H}"}$
- Partial trace, solve (accurately) "grand-canonical" ground-state problem

$$\hat{H}_{x,D}^{\mathsf{imp}} = \mathrm{Tr}_{\mathcal{F}(\mathcal{H}_{x,D}^{\mathsf{env}})}((\mathbf{1} \otimes \hat{\rho}_{\mathcal{H}_{x,D}^{\mathsf{env}}})\hat{H}) \Rightarrow \inf_{\Psi_{x}^{\mathsf{imp}} \in \mathcal{F}(W_{x,D})} \langle \Psi_{x}^{\mathsf{imp}}, \left(\hat{H}_{x,D}^{\mathsf{imp}} - \mu \hat{N}_{x}\right) \Psi_{x}^{\mathsf{imp}} \rangle,$$

 $(\hat{N}_x = d\Gamma(\Pi_{X_x})$: fragment number operator, Π_x : orthogonal projector on X_x .)

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

- $\bullet \text{ "Impurity space"} \colon W_{x,D} = D(X_x) + X_x = D(X_x) \oplus (1-D)(X_x).$
- $\textcircled{3} \ \mathcal{H} = W_{x,D} \oplus \mathcal{H}_{x,D}^{\mathrm{env}} \implies \boxed{ \hat{\rho} = \hat{\rho}_{\Psi_{W_{x,D}}} \otimes \hat{\rho}_{\Psi_{\mathcal{H}_{x,D}^{\mathrm{env}}}} } \text{ in } \mathcal{F} \simeq \mathcal{F}(W_{x,D}) \otimes \mathcal{F}(\mathcal{H}_{x,D}^{\mathrm{env}}), \ "\mathcal{F} = \mathbf{e}^{\mathcal{H}} "$
- **9 Partial trace**, solve (accurately) "grand-canonical" ground-state problem \Rightarrow 1-RDM: $P_{\mu,x}$

$$\hat{H}_{x,D}^{\mathsf{imp}} = \mathrm{Tr}_{\mathcal{F}(\mathcal{H}_{x,D}^{\mathsf{env}})}((\mathbf{1} \otimes \hat{\rho}_{\mathcal{H}_{x,D}^{\mathsf{env}}})\hat{H}) \Rightarrow \inf_{\Psi_{x}^{\mathsf{imp}} \in \mathcal{F}(W_{x,D})} \langle \Psi_{x}^{\mathsf{imp}}, \left(\hat{H}_{x,D}^{\mathsf{imp}} - \mu \hat{N}_{x}\right) \Psi_{x}^{\mathsf{imp}} \rangle,$$

 $(\hat{N}_x = d\Gamma(\Pi_{X_x})$: fragment number operator, Π_x : orthogonal projector on X_x .)

Fixed: orthogonal decomposition of \mathcal{H} into "fragments" $\mathcal{H} = \bigoplus_{x=1}^{N_f} X_x$, $\dim(X_x) = L_x$ finite Given $D \in \mathcal{D}$ matrix, define for each fragment X_x :

- "Impurity space": $W_{x,D} = D(X_x) + X_x = D(X_x) \oplus (1-D)(X_x)$.
- $\textcircled{3} \ \mathcal{H} = W_{x,D} \oplus \mathcal{H}_{x,D}^{\mathrm{env}} \implies \boxed{ \hat{\rho} = \hat{\rho}_{\Psi_{W_{x,D}}} \otimes \hat{\rho}_{\Psi_{\mathcal{H}_{x,D}^{\mathrm{env}}}} } \ \text{in} \ \mathcal{F} \simeq \mathcal{F}(W_{x,D}) \otimes \mathcal{F}(\mathcal{H}_{x,D}^{\mathrm{env}}), \ "\mathcal{F} = e^{\mathcal{H}} "$
- **9 Partial trace**, solve (accurately) "grand-canonical" ground-state problem \Rightarrow 1-RDM: $P_{\mu,x}$

$$\hat{H}_{x,D}^{\mathsf{imp}} = \mathrm{Tr}_{\mathcal{F}(\mathcal{H}_{x,D}^{\mathsf{env}})}((\mathbf{1} \otimes \hat{\rho}_{\mathcal{H}_{x,D}^{\mathsf{env}}})\hat{H}) \Rightarrow \inf_{\Psi_{x}^{\mathsf{imp}} \in \mathcal{F}(W_{x,D})} \langle \Psi_{x}^{\mathsf{imp}}, \left(\hat{H}_{x,D}^{\mathsf{imp}} - \mu \hat{N}_{x}\right) \Psi_{x}^{\mathsf{imp}} \rangle,$$

 $(\hat{N}_x = d\Gamma(\Pi_{X_x})$: fragment number operator, Π_x : orthogonal projector on X_x .)

$$\Rightarrow F^{\mathsf{HL}}(D) = \sum_{x=1}^{N_f} \Pi_x P_{\mu,x} \Pi_x = \begin{pmatrix} \Pi_1 P_{\mu,1} \Pi_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \Pi_{N_f} P_{\mu,N_f} \Pi_{N_f} \end{pmatrix}, \quad \mu \text{ s.t. } \mathrm{Tr}(F^{\mathsf{HL}}(D)) = N$$

Low level map F^{LL} (feedback) and DMET equations

By definition, $F^{\mathsf{HL}}(D) \in \mathcal{P} = \mathsf{Bd}(\mathsf{CH}(\mathcal{D}))$, with $\mathsf{Bd}(\hat{O}) = \sum_{x=1}^{N_f} \Pi_x \hat{O} \Pi_x$. **Feedback**: given $P \in \mathcal{P}$, find a $D \in \mathcal{D}$ s.t. $\mathsf{Bd}(D) = P$ (representability issues [Lemma 2.8]).

For instance, $F^{\mathsf{LL}}(P) = \underset{D \in \mathcal{D}, \mathsf{Bd}(D) = P}{\operatorname{argmin}} \mathcal{E}^{\mathsf{HF}}(D), \quad \mathcal{E}^{\mathsf{HF}}(D)$: \hat{H} Hartree-Fock energy functional.

DMET equations: impose self-consistency (define $F^{\text{DMET}} = F^{\text{LL}} \circ F^{\text{HL}}$), i.e.

$$\left\{ \begin{array}{c} D = F^{\mathsf{LL}}(P) \in \mathcal{D} \\ P = F^{\mathsf{HL}}(D) \in \mathcal{P} \end{array} \right. \iff \left\{ \begin{array}{c} D = F^{\mathsf{DMET}}(D), D \in \mathcal{D} \\ P = F^{\mathsf{HL}}(D) \in \mathcal{P}. \end{array} \right.$$

Mathematical starting point: DMET "is exact in the non-interacting [...] limit" [Knizia, 2012].

Consider $\hat{H}=d\Gamma(H^0)+\hat{H}^I,\quad \hat{H}^I:$ interactions e.g. two-body.

Low level map F^{LL} (feedback) and DMET equations

By definition, $F^{\mathsf{HL}}(D) \in \mathcal{P} = \mathsf{Bd}(\mathsf{CH}(\mathcal{D}))$, with $\mathsf{Bd}(\hat{O}) = \sum_{x=1}^{N_f} \Pi_x \hat{O} \Pi_x$. **Feedback**: given $P \in \mathcal{P}$, find a $D \in \mathcal{D}$ s.t. $\mathsf{Bd}(D) = P$ (representability issues [Lemma 2.8]).

For instance, $F^{\mathsf{LL}}(P) = \underset{D \in \mathcal{D}, \mathsf{Bd}(D) = P}{\operatorname{argmin}} \mathcal{E}^{\mathsf{HF}}(D), \quad \mathcal{E}^{\mathsf{HF}}(D)$: \hat{H} Hartree-Fock energy functional.

DMET equations: impose self-consistency (define $F^{\text{DMET}} = F^{\text{LL}} \circ F^{\text{HL}}$), i.e.

$$\left\{ \begin{array}{c} D = F^{\mathsf{LL}}(P) \in \mathcal{D} \\ P = F^{\mathsf{HL}}(D) \in \mathcal{P} \end{array} \right. \iff \left\{ \begin{array}{c} D = F^{\mathsf{DMET}}(D), D \in \mathcal{D} \\ P = F^{\mathsf{HL}}(D) \in \mathcal{P}. \end{array} \right.$$

Mathematical starting point: DMET "is exact in the non-interacting [...] limit" [Knizia, 2012].

Consider
$$\hat{H}_{\alpha} = d\Gamma(H^0) + \alpha \hat{H}^I$$
, with $\alpha \in [0,1]$

Low level map F^{LL} (feedback) and DMET equations

By definition, $F_{\alpha}^{\mathsf{HL}}(D) \in \mathcal{P} = \mathsf{Bd}(\mathsf{CH}(\mathcal{D}))$, with $\mathsf{Bd}(\hat{O}) = \sum_{x=1}^{N_f} \Pi_x \hat{O} \Pi_x$. **Feedback**: given $P \in \mathcal{P}$, find a $D \in \mathcal{D}$ s.t. $\mathsf{Bd}(D) = P$ (representability issues [Lemma 2.8]).

For instance, $F_{\alpha}^{\mathsf{LL}}(P) = \underset{D \in \mathcal{D}, \mathsf{Bd}(D) = P}{\operatorname{argmin}} \mathcal{E}_{\alpha}^{\mathsf{HF}}(D), \quad \mathcal{E}_{\alpha}^{\mathsf{HF}}(D)$: \hat{H}_{α} Hartree-Fock energy functional.

DMET equations: impose self-consistency (define $F_{\alpha}^{\text{DMET}} = F_{\alpha}^{\text{LL}} \circ F_{\alpha}^{\text{HL}}$), i.e.

$$\left\{ \begin{array}{c} D = F_{\alpha}^{\mathsf{LL}}(P) \in \mathcal{D} \\ P = F_{\alpha}^{\mathsf{HL}}(D) \in \mathcal{P} \end{array} \right. \iff \left\{ \begin{array}{c} D = F_{\alpha}^{\mathsf{DMET}}(D), D \in \mathcal{D} \\ P = F_{\alpha}^{\mathsf{HL}}(D) \in \mathcal{P}. \end{array} \right.$$

Mathematical starting point: DMET "is exact in the non-interacting [...] limit" [Knizia, 2012].

Consider
$$\hat{H}_{\alpha} = d\Gamma(H^0) + \alpha \hat{H}^I$$
, with $\alpha \in [0,1]$

Low level map F^{LL} (feedback) and DMET equations

By definition, $F_{\alpha}^{\mathsf{HL}}(D) \in \mathcal{P} = \mathsf{Bd}(\mathsf{CH}(\mathcal{D}))$, with $\mathsf{Bd}(\hat{O}) = \sum_{x=1}^{N_f} \Pi_x \hat{O} \Pi_x$. **Feedback**: given $P \in \mathcal{P}$, find a $D \in \mathcal{D}$ s.t. $\mathsf{Bd}(D) = P$ (representability issues [Lemma 2.8]).

For instance, $F_{\alpha}^{\mathsf{LL}}(P) = \underset{D \in \mathcal{D}, \mathsf{Bd}(D) = P}{\operatorname{argmin}} \mathcal{E}_{\alpha}^{\mathsf{HF}}(D), \quad \mathcal{E}_{\alpha}^{\mathsf{HF}}(D)$: \hat{H}_{α} Hartree-Fock energy functional.

DMET equations: impose self-consistency (define $F_{\alpha}^{\text{DMET}} = F_{\alpha}^{\text{LL}} \circ F_{\alpha}^{\text{HL}}$), i.e.

$$\left\{ \begin{array}{c} D = F_{\alpha}^{\mathsf{LL}}(P) \in \mathcal{D} \\ P = F_{\alpha}^{\mathsf{HL}}(D) \in \mathcal{P} \end{array} \right. \iff \left\{ \begin{array}{c} D = F_{\alpha}^{\mathsf{DMET}}(D), D \in \mathcal{D} \\ P = F_{\alpha}^{\mathsf{HL}}(D) \in \mathcal{P}. \end{array} \right.$$

Mathematical starting point: DMET "is exact in the non-interacting [...] limit" [Knizia, 2012].

Consider
$$\hat{H}_{\alpha} = d\Gamma(H^0) + \alpha \hat{H}^I$$
, with $\alpha \in [0,1]$ small.

Weakly interacting uniqueness

Proposition 2.1: DMET non-interacting exactness, $\alpha=0$

Under the following assumptions on H^0 and $(X_x)_{x \in [\![1,N]\!]}$:

- A1) The one-particle Hamiltonian H^0 has an energy gap: $\epsilon_N < 0 < \epsilon_{N+1}$,
- A2) The associated unique ground-state 1-RDM $D_0=\chi_{\mathbb{R}_-}(H^0)$ satisfies $\dim(W_{x,D_0})=2L_x$, the 1-RDM D_0 is a fixed point of the non-interacting F_0^{DMET} (nothing ensures it is unique!).

Weakly interacting uniqueness

Proposition 2.1: DMET non-interacting exactness, $\alpha = 0$

Under the following assumptions on H^0 and $(X_x)_{x \in [\![1,N]\!]}$:

- A1) The one-particle Hamiltonian H^0 has an energy gap: $\epsilon_N < 0 < \epsilon_{N+1}$,
- A2) The associated unique ground-state 1-RDM $D_0=\chi_{\mathbb{R}_-}(H^0)$ satisfies $\dim(W_{x,D_0})=2L_x$, the 1-RDM D_0 is a fixed point of the non-interacting F_0^{DMET} (nothing ensures it is unique !).

Theorem 2.4: DMET weakly interacting locally unique solution, α small

Under the following extra assumptions on H^0 and $(X_x)_{x\in [\![1,N_f]\!]}$:

- A3) The block-diagonal map Bd is surjective from $\mathcal{T}_{D_0}\mathcal{D}$ to $\mathcal{T}_{F_0^{\mathsf{LL}}(D_0)}\mathcal{P}$,
- A4) The response function $R: \mathcal{T}_{F_0^{\text{LL}}(D_0)}\mathcal{P} \to \mathcal{T}_{F_0^{\text{LL}}(D_0)}\mathcal{P}$ is invertible [Eq. 2.26], there exists $\alpha_+ > 0$ and a **neighborhood** ω of D_0 in D s.t. for all $\alpha \in [0, \alpha_+)$,
 - $D=F_{\alpha}^{\mathrm{DMET}}(D), \quad D\in\omega \quad \text{ has a unique solution } D_{\alpha}^{\mathrm{DMET}}.$

Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at 0th order

Moreover, $\alpha\mapsto D_{\alpha}^{\mathsf{DMET}}$ is real-analytic on $[0,\alpha_+)$ and such that $D_0^{\mathsf{DMET}}=D_0=\chi_{\mathbb{R}_-}(H^0).$

Proof's idea: implicit function theorem. "Physical": shares properties of the exact solution.

Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at 0th order

Moreover, $\alpha\mapsto D_{\alpha}^{\mathsf{DMET}}$ is real-analytic on $[0,\alpha_+)$ and such that $D_0^{\mathsf{DMET}}=D_0=\chi_{\mathbb{R}_-}(H^0).$

Proof's idea: implicit function theorem. "Physical": shares properties of the exact solution.

Theorem 2.5: DMET is exact up to $O(\alpha^2)$

Under the same assumptions (A1)-(A4), it holds $D_{\alpha}^{\mathrm{DMET}} = D_{\alpha}^{\mathrm{exact}} + O(\alpha^2)$.

Weakly interacting exactness

Theorem 2.4 (bis): the solution is analytic and exact at 0th order

Moreover, $\alpha \mapsto D_{\alpha}^{\mathsf{DMET}}$ is real-analytic on $[0, \alpha_+)$ and such that $D_0^{\mathsf{DMET}} = D_0 = \chi_{\mathbb{R}_-}(H^0)$.

Proof's idea: implicit function theorem. "Physical": shares properties of the exact solution.

Theorem 2.5: DMET is exact up to $O(\alpha^2)$

Under the same assumptions (A1)-(A4), it holds $D_{\alpha}^{\mathrm{DMET}} = D_{\alpha}^{\mathrm{exact}} + O(\alpha^2)$.

(a) H_{10} molecule and its fragmentation (ST0-6G)

(b) First derivative error, w.r.t. α .

Outline

- Embedding methods in quantum mechanics
 - Why (not) quantum mechanics ?
 - Overview of embedding methods
- 2 Density Matrix Embedding Theory (DMET)
 - Reduced density matrices and DMET setting
 - Main results and numerical evidences
- Oynamical Mean-Field Theory (DMFT)
 - Green's functions, Hubbard and Anderson Impurity Model
 - Mathematical (and numerical) results
- 4 Conclusion and perspectives

Hamiltonian dynamics on a C*-algebra: strongly continuous one-parameter unitary semigroup.

Heisenberg picture $\mathbb{H}: \hat{O} \mapsto (\mathbb{H}(\hat{O}): t \mapsto e^{it\hat{H}}\hat{O}e^{-it\hat{H}})$ (useful: $\langle O \rangle(t) = \Omega(\mathbb{H}(\hat{O})(t))$).

Hamiltonian dynamics on a C*-algebra: strongly continuous one-parameter unitary semigroup. Heisenberg picture $\mathbb{H}:\hat{O}\mapsto (\mathbb{H}(\hat{O}):t\mapsto e^{it\hat{H}}\hat{O}e^{-it\hat{H}})$ (useful: $\langle O\rangle(t)=\Omega(\mathbb{H}(\hat{O})(t))$).

Definition (One-body time-ordered Green's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Ω , the one-body time-ordered Green's function is the unique **bounded-operator**-valued map $\tilde{G}: \mathbb{R} \to B(\mathcal{H})$ defined by, $\forall t \in \mathbb{R}, \forall \phi, \phi' \in \mathcal{H}$,

$$\langle {\color{red} \phi}, (i\tilde{G}(t)) {\color{red} \phi'} \rangle = \underbrace{\chi_{\mathbb{R}_+}(t) \Omega \left(\mathbb{H}(\hat{a}_{\phi})(t) \hat{a}_{\phi'}^{\dagger} \right)}_{\text{added particle}} - \underbrace{\chi_{\mathbb{R}_-}(t) \Omega \left(\hat{a}_{\phi'}^{\dagger} \mathbb{H}(\hat{a}_{\phi})(t) \right)}_{\text{added hole}}.$$

Hamiltonian dynamics on a C*-algebra: strongly continuous one-parameter unitary semigroup. Heisenberg picture $\mathbb{H}:\hat{O}\mapsto (\mathbb{H}(\hat{O}):t\mapsto e^{it\hat{H}}\hat{O}e^{-it\hat{H}})$ (useful: $\langle O\rangle(t)=\Omega(\mathbb{H}(\hat{O})(t))$).

Definition (One-body time-ordered Green's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Ω , the one-body time-ordered Green's function is the unique **bounded-operator**-valued map $\tilde{G}: \mathbb{R} \to B(\mathcal{H})$ defined by, $\forall t \in \mathbb{R}, \forall \phi, \phi' \in \mathcal{H}$,

$$\langle \phi, (i\tilde{G}(t))\phi' \rangle = \underbrace{\chi_{\mathbb{R}_+}(t)\Omega\left(\mathbb{H}(\hat{a}_\phi)(t)\hat{a}_{\phi'}^\dagger\right)}_{\text{added particle}} - \underbrace{\chi_{\mathbb{R}_-}(t)\Omega\left(\hat{a}_{\phi'}^\dagger\mathbb{H}(\hat{a}_\phi)(t)\right)}_{\text{added hole}}.$$

• Quantum Green's functions are explicitly defined as dynamic correlations.

Hamiltonian dynamics on a C*-algebra: strongly continuous one-parameter unitary semigroup. Heisenberg picture $\mathbb{H}:\hat{O}\mapsto (\mathbb{H}(\hat{O}):t\mapsto e^{it\hat{H}}\hat{O}e^{-it\hat{H}})$ (useful: $\langle O\rangle(t)=\Omega(\mathbb{H}(\hat{O})(t))$).

Definition (One-body time-ordered Green's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Ω , the one-body time-ordered Green's function is the unique **bounded-operator**-valued map $\tilde{G}: \mathbb{R} \to B(\mathcal{H})$ defined by, $\forall t \in \mathbb{R}, \forall \phi, \phi' \in \mathcal{H}$,

$$\langle \phi, (i\tilde{G}(t))\phi' \rangle = \underbrace{\chi_{\mathbb{R}_+}(t)\Omega\left(\mathbb{H}(\hat{a}_\phi)(t)\hat{a}_{\phi'}^\dagger\right)}_{\text{added particle}} - \underbrace{\chi_{\mathbb{R}_-}(t)\Omega\left(\hat{a}_{\phi'}^\dagger\mathbb{H}(\hat{a}_\phi)(t)\right)}_{\text{added hole}}.$$

- Quantum Green's functions are explicitly defined as dynamic correlations.
- Enough for: average energy (Galitskii-Migdal, \hat{H}^I two-body), metal/ins. (numerics).

Hamiltonian dynamics on a C*-algebra: strongly continuous one-parameter unitary semigroup. Heisenberg picture $\mathbb{H}:\hat{O}\mapsto (\mathbb{H}(\hat{O}):t\mapsto e^{it\hat{H}}\hat{O}e^{-it\hat{H}})$ (useful: $\langle O\rangle(t)=\Omega(\mathbb{H}(\hat{O})(t))$).

Definition (One-body time-ordered Green's function: linear comb. of dynamic correlations)

Given an associated equilibrium state Ω , the one-body time-ordered Green's function is the unique **bounded-operator**-valued map $\tilde{G}: \mathbb{R} \to B(\mathcal{H})$ defined by, $\forall t \in \mathbb{R}, \forall \phi, \phi' \in \mathcal{H}$,

$$\langle \phi, (i\tilde{G}(t))\phi' \rangle = \underbrace{\chi_{\mathbb{R}_+}(t)\Omega\left(\mathbb{H}(\hat{a}_\phi)(t)\hat{a}_{\phi'}^\dagger\right)}_{\text{added particle}} - \underbrace{\chi_{\mathbb{R}_-}(t)\Omega\left(\hat{a}_{\phi'}^\dagger,\mathbb{H}(\hat{a}_\phi)(t)\right)}_{\text{added hole}}.$$

- Quantum Green's functions are explicitly defined as dynamic correlations.
- Enough for: average energy (Galitskii-Migdal, \hat{H}^I two-body), metal/ins. (numerics).
- Experimentally "measurable": in Angle Resolved PhotoEmission Spectroscopy (ARPES).

Non-interacting electrons: $\hat{H} = d\Gamma(H^0)$ with $H^0 \in \mathcal{S}(\mathcal{H}) \Rightarrow \mathbb{H}(\hat{a}_\phi)(t) = \hat{a}_{e^{itH^0}\phi}$.

Non-interacting electrons: $\hat{H} = d\Gamma(H^0)$ with $H^0 \in \mathcal{S}(\mathcal{H}) \Rightarrow \mathbb{H}(\hat{a}_{\phi})(t) = \hat{a}_{citH^0,\phi}$.

When Green is Green: non-interacting electrons.

In this case, \tilde{G} satisfies in the distribution sense, for all $\phi \in D(H^0)$ $(i\frac{d}{dt} - H^0)$ $\tilde{G}\phi = \delta_0\phi$. Its Generalized Fourier Transform $G: \mathbb{C}_+ \to B(\mathcal{H})$, defined by $(\mathbb{C}_+ = \{\Im(z) > 0\})$

$$G(z) = G_+(z) + G_-(\overline{z})^{\dagger}, \quad G_+(z) = \int_{\mathbb{R}_+} e^{izt} \tilde{G}(t) dt, \quad G_-(z) = \int_{\mathbb{R}_-} e^{izt} \tilde{G}(t) dt.$$

is well-defined and is the **resolvent** of H^0 : for all $z \in \mathbb{C}_+$, $G(z) = (z - H^0)^{-1}$.

$$G(z) = \left(z - H^0\right)^{-1}.$$

Non-interacting electrons: $\hat{H} = d\Gamma(H^0)$ with $H^0 \in \mathcal{S}(\mathcal{H}) \Rightarrow \mathbb{H}(\hat{a}_\phi)(t) = \hat{a}_{e^{itH^0}\phi}$.

When Green is Green: non-interacting electrons.

In this case, \tilde{G} satisfies in the distribution sense, for all $\phi \in D(H^0)$ $\left(i\frac{d}{dt} - H^0\right)\tilde{G}\phi = \delta_0\phi$. Its Generalized Fourier Transform $G: \mathbb{C}_+ \to B(\mathcal{H})$, defined by $(\mathbb{C}_+ = \{\Im(z) > 0\})$

$$G(z) = G_+(z) + G_-(\overline{z})^{\dagger}, \quad G_+(z) = \int_{\mathbb{R}_+} e^{izt} \tilde{G}(t) dt, \quad G_-(z) = \int_{\mathbb{R}_-} e^{izt} \tilde{G}(t) dt.$$

is well-defined and is the **resolvent** of H^0 : for all $z\in\mathbb{C}_+,$ $G(z)=\left(z-H^0\right)^{-1}$.

• In general, -G is Nevanlinna-Pick funct.: $G(z) = \int_{\mathbb{R}} \frac{1}{z-\varepsilon} dA(\varepsilon), \quad A \geq 0$ ($B(\mathcal{H})$ -valued)

Non-interacting electrons: $\hat{H} = d\Gamma(H^0)$ with $H^0 \in \mathcal{S}(\mathcal{H}) \Rightarrow \mathbb{H}(\hat{a}_\phi)(t) = \hat{a}_{e^{itH^0}\phi}$.

When Green is Green: non-interacting electrons.

In this case, \tilde{G} satisfies in the distribution sense, for all $\phi \in D(H^0)$ $\left(i\frac{d}{dt} - H^0\right)\tilde{G}\phi = \delta_0\phi$. Its Generalized Fourier Transform $G: \mathbb{C}_+ \to B(\mathcal{H})$, defined by $(\mathbb{C}_+ = \{\Im(z) > 0\})$

$$G(z) = G_+(z) + G_-(\overline{z})^{\dagger}, \quad G_+(z) = \int_{\mathbb{R}_+} e^{izt} \tilde{G}(t) dt, \quad G_-(z) = \int_{\mathbb{R}_-} e^{izt} \tilde{G}(t) dt.$$

is well-defined and is the **resolvent** of H^0 : for all $z\in\mathbb{C}_+,$ $G(z)=\left(z-H^0\right)^{-1}$.

- In general, -G is **Nevanlinna-Pick funct.**: $G(z) = \int_{\mathbb{R}} \frac{1}{z-\varepsilon} dA(\varepsilon), \quad A \geq 0$ ($B(\mathcal{H})$ -valued)
- $\dim(\mathcal{H}) < +\infty$: Källen-Lehmann, spectral measure A describes one-body excitations,

$$\langle \phi, G(z)\phi' \rangle = \sum_{\psi, \psi' \in \mathcal{B}} \frac{\rho_{\psi} + \rho_{\psi'}}{z + (E_{\psi} - E_{\psi'})} \langle \psi, \hat{a}_{\phi}\psi' \rangle \langle \psi', \hat{a}_{\phi'}^{\dagger}\psi \rangle, \quad \hat{H}\psi = E_{\psi}\psi, \quad \hat{\rho}\psi = \rho_{\psi}\psi.$$

Hubbard model: interacting electrons on a graph

(a) Hubbard model on C_6 .

Analytic solutions: [Lieb 2001].

• Given a **finite graph** $\mathcal{G}_H = (\Lambda, E)$, the Fock space is

$$\mathcal{F}_H = \bigotimes_{i \in \Lambda} \mathcal{F}_1, \quad \mathcal{F}_1 = \operatorname{Span}(|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle).$$

• Given a hopping matrix $T:E \to \mathbb{R}$ and an on-site repulsion $U:\Lambda \to \mathbb{R}$, the Hamiltonian is

$$\begin{split} \hat{H}_{H} &= \hat{H}^{0} + \hat{H}^{I} \in \mathcal{S}(\mathcal{F}_{H}), \text{ with} \\ \hat{H}^{0} &= \sum_{\substack{\{i,j\} \in E \\ \sigma = \uparrow, \downarrow}} T_{i,j} \left(\hat{a}_{i,\sigma}^{\dagger} \hat{a}_{j,\sigma} + \hat{a}_{j,\sigma}^{\dagger} \hat{a}_{i,\sigma} \right), \\ \hat{H}^{I} &= \sum_{i \in \Lambda} U_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}, \quad \hat{n}_{i,\sigma} = \hat{a}_{i,\sigma}^{\dagger} \hat{a}_{i,\sigma}. \end{split}$$

Anderson Impurity Model (AIM): an embedded Hubbard model

(a) AIM with $\mathcal{G}_H = C_4$ and B = 5.

ullet Given $B\in\mathbb{N}$ a bath dimension,

$$\mathcal{F}_{ ext{AIM}} = \mathcal{F}_{H} \otimes \mathcal{F}_{ ext{bath}}, \quad \mathcal{F}_{ ext{bath}} = \bigotimes_{i=1}^{B} \mathcal{F}_{1}$$

• Given bath levels $\epsilon: [\![1,B]\!] \to \mathbb{R}$ and a coupling $V\colon [\![1,B]\!] \times \Lambda \to \mathbb{R}$,

$$\begin{split} \hat{H}_{\mathrm{AIM}} &= \hat{H}_{H} + \hat{H}_{\mathrm{bath}}^{0} + \hat{H}_{\mathrm{int}}^{0}, \text{ with } \\ \hat{H}_{\mathrm{bath}}^{0} &= \sum_{k \in [\![1,B]\!]} \epsilon_{k} \left(\hat{n}_{k,\uparrow} + \hat{n}_{k,\downarrow} \right), \\ \hat{H}_{\mathrm{int}}^{0} &= \sum_{\substack{k \in [\![1,B]\!]\\ i \in \Lambda, \sigma = \uparrow, \downarrow}} V_{k,i} \left(\hat{a}_{k,\sigma}^{\dagger} \hat{a}_{i,\sigma} + \hat{a}_{i,\sigma}^{\dagger} \hat{a}_{k,\sigma} \right). \end{split}$$

For finite dimensional systems, assuming $\hat{H}=d\Gamma(H^0)+\hat{H}^I$, (Hubbard and AIM),

For finite dimensional systems, assuming $\hat{H}=d\Gamma(H^0)+\hat{H}^I$, (Hubbard and AIM),

Definition (Self-energy: Σ s.t. $G(z) = (z - (H^0 + \Sigma(z))^{-1} \text{ (local non-interacting picture)})$

Given Ω , the self-energy is the unique bounded operators $\Sigma: \mathbb{C}_+ \to B(\mathcal{H})$ defined by, $\forall z \in \mathbb{C}_+$,

$$\Sigma(z) = (G^0(z))^{-1} - G(z)^{-1} = z - H^0 - G(z)^{-1}$$
 (-\Sigma is Nevanlinna-Pick.)

For finite dimensional systems, assuming $\hat{H} = d\Gamma(H^0) + \hat{H}^I$, (Hubbard and AIM),

Definition (Self-energy: Σ s.t. $G(z) = (z - (H^0 + \Sigma(z))^{-1} \text{ (local non-interacting picture)})$

Given Ω , the self-energy is the unique bounded operators $\Sigma:\mathbb{C}_+\to B(\mathcal{H})$ defined by, $\forall z\in\mathbb{C}_+$,

$$\Sigma(z) = (G^0(z))^{-1} - G(z)^{-1} = z - H^0 - G(z)^{-1}$$
 (-\Sigma is Nevanlinna-Pick.)

Definition (Hybridization: Δ s.t. $G^0(z)_{\sf imp} = \left(z - (H^0_{\sf imp} + \Delta(z))\right)^{-1}$ (local *isolated* picture))

For an AIM, $\mathcal{H}=\mathcal{H}_{imp}\oplus\mathcal{H}_{imp}^{\perp}$, the hybridization function $\Delta:\mathbb{C}_+\to B(\mathcal{H}_{imp}$ is defined by

$$\Delta(z) = z - H_{\text{imp}}^0 - \left(G^0(z)_{\text{imp}}\right)^{-1}$$
 (Schur complement). $\left(-\Delta \text{ is Nevanlinna-Pick}\right)$

For finite dimensional systems, assuming $\hat{H} = d\Gamma(H^0) + \hat{H}^I$, (Hubbard and AIM),

Definition (Self-energy: Σ s.t. $G(z) = (z - (H^0 + \Sigma(z))^{-1} \text{ (local non-interacting picture)})$

Given Ω , the self-energy is the unique bounded operators $\Sigma: \mathbb{C}_+ \to B(\mathcal{H})$ defined by, $\forall z \in \mathbb{C}_+$,

$$\Sigma(z) = \left(G^0(z)\right)^{-1} - G(z)^{-1} = z - H^0 - G(z)^{-1}$$
 (-\Sigma is Nevanlinna-Pick.)

Definition (Hybridization: Δ s.t. $G^0(z)_{\sf imp} = \left(z - (H^0_{\sf imp} + \Delta(z))\right)^{-1}$ (local *isolated* picture))

For an AIM, $\mathcal{H}=\mathcal{H}_{imp}\oplus\mathcal{H}_{imp}^{\perp}$, the hybridization function $\Delta:\mathbb{C}_{+}\to B(\mathcal{H}_{imp}$ is defined by

$$\Delta(z) = z - H_{\text{imp}}^0 - \left(G^0(z)_{\text{imp}}\right)^{-1}$$
 (Schur complement). $\left(-\Delta \text{ is Nevanlinna-Pick}\right)$

DMFT foundation: sparsity pattern and impurity solver [Lin, Lindsey 2019], [Proposition 3.2.8]

Given an AIM $(\mathcal{G}_H, T, U, B, \epsilon, V)$, $\Sigma_{\mathrm{AIM}} = \Sigma_{\mathrm{imp}} \oplus 0$ and $\Sigma_{\mathrm{imp}} = \mathrm{ImpSolv}_{\mathcal{G}_H, T, U, \Omega}(\Delta)$.

DMFT goal: G associated to Gibb's states $\hat{\rho} = \frac{1}{Z} e^{-\beta \left(\hat{H} - \mu \hat{N}\right)}$ of Hubbard $(\mathcal{G}_H = (\Lambda, E), T, U)$

DMFT goal: G associated to Gibb's states $\hat{\rho} = \frac{1}{Z} e^{-\beta \left(\hat{H} - \mu \hat{N}\right)}$ of Hubbard $(\mathcal{G}_H = (\Lambda, E), T, U)$ DMFT principle: approximate using many but simpler $(G_i)_{i \in [\![1,|\mathfrak{P}|\!]\!]}$ of Gibb's states of AIM.

DMFT goal: G associated to Gibb's states $\hat{\rho} = \frac{1}{Z} e^{-\beta \left(\hat{H} - \mu \hat{N}\right)}$ of Hubbard $(\mathcal{G}_H = (\Lambda, E), T, U)$ DMFT principle: approximate using many but simpler $(G_i)_{i \in \llbracket 1, |\mathfrak{M}| \rrbracket}$ of Gibb's states of AIM.

DMFT equations:

$$G_{i,\text{imp}}(\Delta_i) = G_{\text{DMFT},i}$$

$$G_{\text{DMFT}}^{-1} = G_H^{0,-1} - \Sigma_{\text{DMFT}}$$

$$\Sigma_{\text{DMFT}} = \bigoplus_{i=1}^{|\mathfrak{P}|} \Sigma_{i,\text{imp}}$$

$$\Sigma_{i,\text{imp}} = \text{ImpSolv}_i(\Delta_i)$$

DMFT parameters (fixed):

DMFT goal: G associated to Gibb's states $\hat{\rho} = \frac{1}{Z} e^{-\beta \left(\hat{H} - \mu \hat{N}\right)}$ of Hubbard $(\mathcal{G}_H = (\Lambda, E), T, U)$ DMFT principle: approximate using many but simpler $(G_i)_{i \in \llbracket 1, |\mathfrak{M}| \rrbracket}$ of Gibb's states of AIM.

DMFT equations:

$$G_{i,\text{imp}}(\Delta_i) = G_{\text{DMFT},i}$$

$$G_{\text{DMFT}}^{-1} = G_H^{0,-1} - \Sigma_{\text{DMFT}}$$

$$\Sigma_{\text{DMFT}} = \bigoplus_{i=1}^{|\mathfrak{P}|} \Sigma_{i,\text{imp}}$$

$$\Sigma_{i,\text{imp}} = \text{ImpSolv}_i(\Delta_i)$$

DMFT parameters (fixed):

9 Partition $\mathfrak{P} = (\Lambda_i)_{i \in \llbracket 1, |\Lambda| \rrbracket}$ of Λ . Our work: singletons.

DMFT goal: G associated to Gibb's states $\hat{\rho} = \frac{1}{Z} e^{-\beta \left(\hat{H} - \mu \hat{N}\right)}$ of Hubbard $(\mathcal{G}_H = (\Lambda, E), T, U)$ DMFT principle: approximate using many but simpler $(G_i)_{i \in \llbracket 1, \rfloor \Im 1 \rrbracket}$ of Gibb's states of AIM.

DMFT equations:

$$G_{i,\text{imp}}(\Delta_i) = G_{\text{DMFT},i}$$

$$G_{\text{DMFT}}^{-1} = G_H^{0,-1} - \Sigma_{\text{DMFT}}$$

$$\Sigma_{\text{DMFT}} = \bigoplus_{i=1}^{|\mathfrak{P}|} \Sigma_{i,\text{imp}}$$

$$\Sigma_{i,\text{imp}} = \text{ImpSolv}_i(\Delta_i)$$

DMFT parameters (fixed):

- **①** Partition $\mathfrak{P} = (\Lambda_i)_{i \in \mathbb{I}_1, |\Lambda| \mathbb{T}}$ of Λ . Our work: singletons.
- **② Approximation** of $\operatorname{ImpSolv}$ (\simeq DFT universal functional). **Our work: IPT** approximation.

The Iterated Perturbation Theory (IPT) impurity solver (vanilla)

- Freq. used in physics.
- ullet 2nd order pert. in U.
- Figure: [Georges 2016].

Assumptions: single-site translation-invariant paramagnetic DMFT (half-filling)

Assume that $|\mathfrak{P}|=|\Lambda|$ and (\mathcal{G}_H,T,U) is a (weighted) vertex-transitive graph. Restrict to solutions $\forall i\in\mathfrak{P},\quad -\Delta_i=-\Delta:\mathbb{C}_+\to\overline{\mathbb{C}_+},\quad -\Sigma_{i,\mathrm{imp}}=-\Sigma:\mathbb{C}_+\to\overline{\mathbb{C}_+}.$

 $IPT_{\beta}(U \in \mathbb{R}, \Delta)$: defined in Matsubara's formalism, temperature $1/\beta$, analytic continuation:

Find Σ analytic s.t. $\Im(-\Sigma) \geq 0$ (Nevanlinna-Pick function) and $\forall n \in \mathbb{N}, \quad \Sigma(i\omega_n) = \Sigma_n^{\mathrm{IPT}},$

$$\text{with } \omega_n = \frac{(2n+1)\pi}{\beta}, \quad \Sigma_n^{\mathrm{IPT}} = U^2 \int_0^\beta e^{i\omega_n \tau} (\frac{1}{\beta} \sum_{n' \in \mathbb{Z}} e^{-i\omega_{n'} \tau} \left(i\omega_{n'} - \Delta(i\omega_{n'})\right)^{-1})^3 d\tau.$$

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger}$$

$$\Sigma = IPT_{\beta}(U, \Delta)$$

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger} = \mathrm{BU}_{\mathcal{G}_{H}, T}(\Sigma(z))$$

$$\Sigma = \mathrm{IPT}_{\beta}(U, \Delta)$$

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger} = \mathrm{BU}_{\mathcal{G}_{H}, T}(\Sigma(z)) \iff \Delta = F^{\mathrm{DMFT}}(\Delta), \Delta \in \mathfrak{D}?$$

$$\Sigma = \mathrm{IPT}_{\beta}(U, \Delta)$$

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger} = \mathrm{BU}_{\mathcal{G}_{H}, T}(\Sigma(z)) \iff \Delta = F^{\mathrm{DMFT}}(\Delta), \Delta \in \mathfrak{D}?$$

$$\Sigma = \mathrm{IPT}_{\beta}(U, \Delta)$$

Fact (Functional spaces for **finite dimensional** bath: mathematical starting point)

For an AIM,
$$\Delta(z) = \sum_{k=1}^B \frac{|V_k|^2}{z - \epsilon_k}$$
. For $\Delta \in \operatorname{Ran}(\mathrm{BU}_{\mathcal{G}_H,T}), \sum_{k=1}^B |V_k|^2 = WW^\dagger \in \mathbb{R}$.

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger} = \mathrm{BU}_{\mathcal{G}_{H}, T}(\Sigma(z)) \iff \Delta = F^{\mathrm{DMFT}}(\Delta), \Delta \in \mathfrak{D}?$$

$$\Sigma = \mathrm{IPT}_{\beta}(U, \Delta)$$

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

For an AIM,
$$\Delta(z) = \sum_{k=1}^B \frac{|V_k|^2}{z - \epsilon_k}$$
. For $\Delta \in \operatorname{Ran}(\mathrm{BU}_{\mathcal{G}_H,T}), \sum_{k=1}^B |V_k|^2 = WW^\dagger \in \mathbb{R}$.

Try:
$$\mathfrak{D} = \mathfrak{D}_f = WW^\dagger \mathcal{S}\left(\mathcal{P}(\mathbb{R}) \cap \{\operatorname{supp}(\mu) \text{ fin.}\}\right), \quad \left|\mathcal{S}_{\mu}(z) = \int \frac{d\mu(\epsilon)}{z - \epsilon}\right|$$
 (Stieljes transform).

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger} = \mathrm{BU}_{\mathcal{G}_{H}, T}(\Sigma(z)) \iff \Delta = F^{\mathrm{DMFT}}(\Delta), \Delta \in \mathfrak{D}?$$

$$\Sigma = \mathrm{IPT}_{\beta}(U, \Delta)$$

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

$$\textit{For an AIM}, \quad \Delta(z) = \sum_{k=1}^B \frac{|V_k|^2}{z - \epsilon_k}. \; \textit{For } \Delta \in \operatorname{Ran}(\mathrm{BU}_{\mathcal{G}_H,T}), \sum_{k=1}^B |V_k|^2 = WW^\dagger \in \mathbb{R}.$$

$$\mathsf{Try:} \ \mathfrak{D} = \mathfrak{D}_f = WW^\dagger \mathcal{S} \left(\mathcal{P}(\mathbb{R}) \cap \{ \mathrm{supp}(\mu) \ \mathsf{fin.} \} \right), \qquad \boxed{\mathcal{S}_\mu(z) = \int \frac{d\mu(\epsilon)}{z - \epsilon}} \ \mathsf{(Stieljes \ transform)}.$$

Proposition (Well-def.: BU[Lindsey 2019], IPT[Prop. 3.2.18]; non- \exists of solution [Prop. 3.3.5])

 $\mathrm{BU}:\mathfrak{S}_f\to\mathfrak{D}_f$, $\mathrm{IPT}:\mathfrak{D}_f\to\mathfrak{S}_f$ are well-defined w. $\mathfrak{S}_f=\mathcal{S}(\mathcal{M}_+(\mathbb{R})\cap\{\mathrm{supp}(\mu)\ \mathrm{fin}\})$ Apart from strictly/non interacting cases, $\mathrm{DMFT}=\mathrm{BU}\circ\mathrm{IPT}$ has **no fixed point in** \mathfrak{D}_f .

$$\Delta(z) = W \left(z - H_{\perp}^{0} - \Sigma(z) \right)^{-1} W^{\dagger} = \mathrm{BU}_{\mathcal{G}_{H}, T}(\Sigma(z)) \iff \Delta = F^{\mathrm{DMFT}}(\Delta), \Delta \in \mathfrak{D}?$$

$$\Sigma = \mathrm{IPT}_{\beta}(U, \Delta)$$

Fact (Functional spaces for finite dimensional bath: mathematical starting point)

For an AIM,
$$\Delta(z) = \sum_{k=1}^{\mathbf{B} \to \infty} \frac{|V_k|^2}{z - \epsilon_k}$$
. For $\Delta \in \operatorname{Ran}(\mathrm{BU}_{\mathcal{G}_H,T}), \sum_{k=1}^B |V_k|^2 = WW^\dagger \in \mathbb{R}$.

Try:
$$\mathfrak{D} = \mathfrak{D}_f = WW^\dagger \mathcal{S}\left(\mathcal{P}(\mathbb{R}) \cap \{\operatorname{supp}(\mu) \text{ fin.}\}\right), \quad \mathcal{S}_\mu(z) = \int \frac{d\mu(\epsilon)}{z - \epsilon}$$
 (Stieljes transform).

Proposition (Well-def.: BU[Lindsey 2019], IPT[Prop. 3.2.18]; non- \exists of solution [Prop. 3.3.5])

 $\mathrm{BU}:\mathfrak{S}_f\to\mathfrak{D}_f$, $\mathrm{IPT}:\mathfrak{D}_f\to\mathfrak{S}_f$ are well-defined w. $\mathfrak{S}_f=\mathcal{S}(\mathcal{M}_+(\mathbb{R})\cap\{\mathrm{supp}(\mu)\ \mathrm{fin}\})$ Apart from strictly/non interacting cases, $\mathrm{DMFT}=\mathrm{BU}\circ\mathrm{IPT}$ has **no fixed point in** \mathfrak{D}_f .

Extension:
$$\mathfrak{D} = WW^{\dagger}\mathcal{S}(\mathcal{P}(\mathbb{R})), \quad \mathfrak{S} = \mathcal{S}(\mathcal{M}_{+}(\mathbb{R}))$$

Extension:
$$\mathfrak{D} = WW^{\dagger}\mathcal{S}(\mathcal{P}(\mathbb{R})), \quad \mathfrak{S} = \mathcal{S}(\mathcal{M}_{+}(\mathbb{R}))$$

Physics: "Infinite" dimensional bath. Mathematics: measure analysis (up to S, S^{-1}).

Extension:
$$\mathfrak{D} = WW^{\dagger}\mathcal{S}(\mathcal{P}(\mathbb{R})), \quad \mathfrak{S} = \mathcal{S}(\mathcal{M}_{+}(\mathbb{R}))$$

Physics: "Infinite" dimensional bath. Mathematics: measure analysis (up to $\mathcal{S}, \mathcal{S}^{-1}$).

[Propositions 3.3.6-3.3.8], BU and IPT for infinite dimensional bath

 $\mathrm{BU}:\mathfrak{D}\to\mathfrak{S}$ is well-defined. IPT admits a unique continuous extension $\mathfrak{D}\to\mathfrak{S}$ for the Kantorovich-Rubinstein distance.

Extension:
$$\mathfrak{D} = WW^{\dagger}\mathcal{S}(\mathcal{P}(\mathbb{R})), \quad \mathfrak{S} = \mathcal{S}(\mathcal{M}_{+}(\mathbb{R}))$$

Physics: "Infinite" dimensional bath. Mathematics: measure analysis (up to $\mathcal{S}, \mathcal{S}^{-1}$).

[Propositions 3.3.6-3.3.8], ${\rm BU}$ and ${\rm IPT}$ for infinite dimensional bath

 $\mathrm{BU}:\mathfrak{D}\to\mathfrak{S}$ is well-defined. IPT admits a unique continuous extension $\mathfrak{D}\to\mathfrak{S}$ for the Kantorovich-Rubinstein distance.

Main theorem ([Theorem 3.3.9], [Proposition 3.3.10])

 DMFT admits a fixed point in \mathfrak{D} . Any fixed point admits fin. moments up to any order.

Extension:
$$\mathfrak{D} = WW^{\dagger}\mathcal{S}(\mathcal{P}(\mathbb{R})), \quad \mathfrak{S} = \mathcal{S}(\mathcal{M}_{+}(\mathbb{R}))$$

Physics: "Infinite" dimensional bath. Mathematics: measure analysis (up to S, S^{-1}).

[Propositions 3.3.6-3.3.8], BU and IPT for infinite dimensional bath

 $\mathrm{BU}:\mathfrak{D}\to\mathfrak{S}$ is well-defined. IPT admits a unique continuous extension $\mathfrak{D}\to\mathfrak{S}$ for the Kantorovich-Rubinstein distance.

Main theorem ([Theorem 3.3.9], [Proposition 3.3.10])

DMFT admits a fixed point in \mathfrak{D} . Any fixed point admits fin. moments up to any order.

Proof (with measures).

 $\mbox{DMFT}: \mu \mbox{ with k-moments} \mapsto k+4 \mbox{ moments (compactness) and weakly continuous.}$ Schauder(-Singbal) fixed-point theorem on $\mathcal{P}(\mathbb{R})$ (completeness).

Numerical results: Mott transition (Matsubara discretized)

Figure: Spectral function ρ (a.k.a. A): analytic continuation results for the Hubbard dimer ($\beta=1$). Metallic criteria: $\rho(0)>0$ (TRIQS simulations).

Outline

- Embedding methods in quantum mechanics
 - Why (not) quantum mechanics?
 - Overview of embedding methods
- 2 Density Matrix Embedding Theory (DMET)
 - Reduced density matrices and DMET setting
 - Main results and numerical evidences
- Dynamical Mean-Field Theory (DMFT)
 - Green's functions, Hubbard and Anderson Impurity Model
 - Mathematical (and numerical) results
- 4 Conclusion and perspectives

Concluding table

	DMFT	DMET
General framework		
Equilibrium state	Gibbs state, $\hat{\rho} = e^{-\beta(\hat{H} - \mu \hat{N})}/Z$	Ground state, $\hat{ ho}$ proj. onto Ψ
Reduced quantity	Green's function G (Pick function)	1-RDM D (self-adjoint)
Model of interest	Hubbard model $(\mathcal{G}_H = (\Lambda, E), T, U)$	Any finite dimensional
Decomposition of ${\cal H}$	DMFT partition ${\mathfrak P}$ of Λ	\perp decomposition $\oplus_x X_x$
Mean-field model	Collection of AIMs	Collection of $(W_{x,D}, \hat{H}_{x,D}^{\mathrm{imp}})$
Bath dimension	Infinite (non-interacting)	$\dim(W_{x,D}) = 2\dim(X_x)$
Impurity step	Impurity solver $\Delta \mapsto \Sigma$ (IPT here)	$High\text{-level }F^{\mathrm{HL}}:D\mapsto P$
Self-consistency	Bath Update map $\Sigma \mapsto \Delta$	Low-level $F^{\mathrm{LL}}: P \mapsto D$
Mathematical results on self-consistent equations in this thesis		
Existence	Global , conditional Chapter 4	Near $\alpha = 0$, under (A1)-(A4)
Uniqueness	Trivial limits , locally Chapter 4	Near $\alpha = 0$, locally
Exactness	Trivial limits	First order in α , near $\alpha = 0$

Table: Overview table of the main features of DMFT and DMET from the perspective of this thesis.

Regarding **DMET**:

Regarding **DMET**:

• Strictly interacting setting (already started by Cancès, Faulstich et al.).

Regarding **DMET**:

- Strictly interacting setting (already started by Cancès, Faulstich et al.).
- Mathematics of the finite-temperature extension
 Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

Regarding **DMET**:

- Strictly interacting setting (already started by Cancès, Faulstich et al.).
- Mathematics of the finite-temperature extension
 Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

Regarding **DMFT**:

 Preliminary results: numerical analysis Matsubara discretized scheme, new numerical scheme and particle-hole symmetry condition.

Regarding **DMET**:

- Strictly interacting setting (already started by Cancès, Faulstich et al.).
- Mathematics of the finite-temperature extension
 Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

- Preliminary results: numerical analysis Matsubara discretized scheme, new numerical scheme and particle-hole symmetry condition.
- Uniqueness to the IPT-DMFT equations.

Regarding **DMET**:

- Strictly interacting setting (already started by Cancès, Faulstich et al.).
- Mathematics of the finite-temperature extension
 Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

- Preliminary results: numerical analysis Matsubara discretized scheme, new numerical scheme and particle-hole symmetry condition.
- Uniqueness to the IPT-DMFT equations.
- Soon: Impurity solver well-posedness (easier setting to study quantum Luttinger-Ward functional formalism [Lin, Lindsey 2021]) and higher order solvers (CTQMC).

Regarding **DMET**:

- Strictly interacting setting (already started by Cancès, Faulstich et al.).
- Mathematics of the finite-temperature extension
 Physics: [Sun, Ray, Cui, Stoudenmire, Ferrero, Chan 2020].

- Preliminary results: numerical analysis Matsubara discretized scheme, new numerical scheme and particle-hole symmetry condition.
- Uniqueness to the IPT-DMFT equations.
- Soon: Impurity solver well-posedness (easier setting to study quantum Luttinger-Ward functional formalism [Lin, Lindsey 2021]) and higher order solvers (CTQMC).
- Later: thermodynamic limits, " $d = \infty$ " exactness [Metzner, Vollhardt 1989].

Numerical results: DMET assumptions' test on H_6 .

Figure: Numerical test of assumptions A3 & A4 on H₆ molecule.

Numerical results: DMET VS Hartree-Fock

Figure: Numerical tests for H_6 molecule, with varying Θ .

Matsubara's frequencies discretized IPT-DMFT equations

Definition (Matsubara discretized scheme)

Given $N_{\omega} \in \mathbb{N}$ a Matsubara's frequencies cutoff, solve for all $n \in \llbracket 0, N_{\omega}
rbracket$,

$$\Delta_n = W \left(i\omega_n - H_\perp^0 - \Sigma_n \right)^{-1} W^{\dagger} \tag{3}$$

$$\Sigma_n = U^2 \int_0^\beta e^{i\omega_n \tau} \left(\frac{1}{\beta} \sum_{n'=-(N_\omega + 1)}^{N_\omega} e^{-i\omega_{n'}\tau} \left(i\omega_{n'} - \Delta_{n'} \right)^{-1} \right)^3 d\tau \tag{4}$$

with
$$-\Delta = (-\Delta_n)_{n \in \llbracket 0, N_\omega \rrbracket}$$
, $-\Sigma = (-\Sigma_n)_{n \in \llbracket 0, N_\omega \rrbracket} \subset \overline{\mathbb{C}_+}^{N_\omega + 1}$.

Looks similar: completely different strategy (and results !), no Nevanlinna-Pick functions.

→ Non-physical solutions exist (and are exhibited !).

Only conditional existence, but uniqueness result (also conditional, finite dimensional).

Theoretical results: conditional existence

$$R_{N_{\omega}} = \sup \left\{ R \in \mathbb{R}_{+} \text{ s.t. } \forall z \in B(0,R) \cap \overline{\mathbb{C}_{+}}^{N_{\omega}+1}, \forall n \in [0,N_{\omega}], \quad \Im \left(F_{n,N_{\omega}}(z)\right) \leq 0 \right\}, \quad \text{(5)}$$

where
$$F_{n,N_{\omega}}(z) = \sum_{\substack{n_1,n_2,n_3 = -(N_{\omega}+1)\\n_1+n_2+n_3 = n-1}}^{N_{\omega}} \prod_{i=1}^{3} \left(i(2n_i+1)/\pi + z_{n_i}\right)^{-1}$$
. (6)

Theorem 4.2.1: Existence of solution

The critical radius $R_{N_{\omega}}$ is well-defined and > 0. Moreover, $\forall \beta \in \mathbb{R}_{+}^{*}$, $W^{\dagger} \in \mathbb{R}_{L-1}$ satisfying

$$\beta \|W\|_2 \le \sqrt{2\sqrt{2}R_{N_\omega}},\tag{7}$$

and $\forall U \in \mathbb{R}$, (3) & (4) admit a solution $(\Delta, \Sigma) \in \mathfrak{D}_{\beta, N_{\omega}} \times \mathfrak{S}_{\beta, N_{\omega}, U}$ where

$$\mathfrak{D}_{\beta,N_{\omega}} = B(0, R_{N_{\omega}}/\beta) \cap \left(-\overline{\mathbb{C}_{+}}^{N_{\omega}+1}\right), \quad \mathfrak{S}_{\beta,N_{\omega},U} = \mathrm{IPT}_{N_{\omega}}(\mathfrak{D}_{\beta,N_{\omega}}).$$

Theoretical results: conditional uniqueness

$$L_{N_{\omega}} = \max_{n \in [0, N_{\omega}]} \operatorname{Lip}_{\mathbb{C}_{+}}(F_{n, N_{\omega}}). \tag{8}$$

Theorem 4.2.2: Uniqueness of solution

For all $N_{\omega} \in \mathbb{N}$, $\beta \in \mathbb{R}_{+}^{*}$, $W^{\dagger} \in \mathbb{R}_{L-1}$, $U \in \mathbb{R}$ satisfying with the previous assumption and

$$\left(\frac{\beta^2 \|W\|_2 U}{\pi}\right)^2 L_{N_\omega} < 1,$$

the discretized IPT-DMFT equations (3) (4) admits a unique solution in $\mathfrak{D}_{\beta} \times \mathfrak{S}_{\beta,N_{\omega},U}$. Moreover, the fixed point algorithm sequence $\left(\Delta^{(n)}\right)_{n\in\mathbb{N}}$

$$\Delta^{(0)} \in \mathfrak{D}_{\beta}, \quad \forall n \in \mathbb{N}, \quad \Delta^{(n+1)} = \mathrm{DMFT}_{N_{\omega}}(\Delta^{(n)})$$

converges linearly toward this solution.

Numerical results: Matsubara discretized, Hubbard dimer.

Figure: Residual $\|\Delta^{(n+1)} - \Delta^{(n)}\|_2$ in log scale, for $n \in [0, N_{\text{iter}}]$, $\beta = 1$ (top), $\beta = 10$ (bottom).

Preliminary results: new numerical scheme for IPT-DMFT

Solutions: measures with **finite moments** up to any order: show it **numerically**? New "exact diagonalization"-truncation num. scheme. **without num. analytic continuation**.

Figure: New ED-truncation scheme results, U=4, $\beta=0$, Hubbard dimer.

Suggests measure is exponentially decreasing: would prove uniqueness of the solution!

Preliminary results: particle-hole symmetry (Coulson Rushbrooke)

Hubbard: particle-hole symmetry $\iff \mathcal{G}_H$ is bipartite [Bach, Solovej, Lieb 1994] (76 "sym")

(b) New ED-truncation scheme

Theorem (translation invariant IPT-DMFT particle-hole symmetry condition)

Given ν an IPT-DMFT fixed point: ν is symmetric $\iff \mathcal{G}_H$ is bipartite.

Proof: for now, $\beta = 0$ only.

