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Résumé succinct

Dans cette thèse, on se propose d’étudier les propriétés mathématiques et numériques de certaines
méthodes de plongement en mécanique quantique. Le principe de ces dernières réside dans l’approximation
d’un grand système quantique en une collection de sous-systèmes auto-cohérents. Cette stratégie per-
met d’outrepasser les limitations pratiques inhérentes du problème à N -corps, et de décrire certaines
propriétés de systèmes électroniques fortement corrélés.

La première partie pose le cadre mathématique et introduit les deux méthodes étudiées dans cette
thèse : d’une part la Théorie du Champ Moyen Dynamique (Dynamical Mean-Field Theory (DMFT)),
s’intéressant aux fonctions de Green quantiques à un corps, et d’autre part la Théorie du Plongement de
la Matrice Densité (Density Matrix Embedding Theory (DMET)), portant sur la matrice densité réduite
à un corps.

On présente alors une analyse des équations DMET, où l’on démontre l’existence et l’unicité d’une
solution “physique” dans la limite faiblement interagissante. La qualité de l’approximation réalisée est
aussi étudiée dans cette limite : on montre l’exactitude au premier ordre, en le paramètre d’interaction
entre les électrons, de l’approximation DMET. Des résultats numériques présentent l’applicabilité des
théorèmes démontrés, et soulignent l’importance des hypothèses formulées.

Les équations DMFT sont étudiées dans la partie suivante, dans le cadre de l’approximation du solveur
d’impureté “Iterated Perturbation Theory (IPT)”. Notre analyse montre l’existence de solutions à ces
équations, à l’aide d’une reformulation originale de ces dernières en termes d’un problème de point-fixe
dans l’espace de certaines mesures positives.

Enfin, on étudie les propriétés d’une version discrète des équations IPT-DMFT, en donnant des
résultats d’existence et d’unicité de la solution. Des simulations numériques réalisées sur un modèle de
Hubbard révèlent l’intérêt et les propriétés de cette méthode dans l’étude d’un effet de fortes corrélations:
la transition de Mott.

Executive summary

In this thesis, we propose to study the mathematical and numerical properties of certain embedding meth-
ods in quantum mechanics. The principle of these methods lies in the approximation of a large quantum
system into a collection of self-consistent subsystems. This strategy makes it possible to overcome the
practical limitations inherent in the N -body problem, and to describe certain properties of strongly
correlated electronic systems.

The first part sets out the mathematical framework and introduces the two methods studied in this
thesis: Dynamical Mean-Field Theory (DMFT), which deals with one-body quantum Green’s functions,
and Density Matrix Embedding Theory (DMET), which deals with the one-body reduced density matrix.

We then present an analysis of the DMET equations, in which we demonstrate the existence and
uniqueness of a “physical” solution in the weakly interacting limit. The quality of the approximation is
also studied in this limit: the first-order accuracy of the DMET approximation in terms of the electron
interaction parameter is shown. Numerical results show the applicability of the theorems demonstrated,
and underline the importance of the assumptions formulated.

The DMFT equations are studied in the following section, in the framework of the approximation of
the impurity solver “Iterated Perturbation Theory (IPT)”. Our analysis shows the existence of solutions
to these equations, using an original reformulation of the latter in terms of a fixed-point problem in the
space of certain positive measures.

Finally, we study the properties of a discrete version of the IPT-DMFT equations, giving existence
and uniqueness results for the solution. Numerical simulations implemented on the Hubbard model reveal
the interest and properties of this method in the study of a strong correlations effect: the Mott transition.
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Résumé détaillé

Cette thèse se concentre sur l’analyse mathématique et numérique d’une classe d’approximations en
mécanique quantique, les méthodes de plongement (embedding methods). Ces dernières s’intéressent plus
précisément aux systèmes d’électrons en interaction, et sont motivées par des réalisations expérimentales
dont l’explication théorique est un sujet actif de recherche, aussi bien en physique de la matière condensée
(supraconductivité à haute température par exemple) qu’en chimie quantique (structure électronique par
exemple).

Vue d’ensemble

Avant de présenter ces approximations, rappelons que l’étude de systèmes quantiques impliquant un grand
nombre de particules en interaction constitue un véritable défi pour le mathématicien appliqué, aussi bien
analytique que numérique. Par exemple, connâıtre les états admissibles d’un système quantique isolé et
composé d’une assemblée de N particules en interaction nécessite de résoudre d’un problème aux valeurs
propres, l’équation de Schrödinger à N corps. Cette équation, dont l’inconnue est la fonction d’onde à
N corps, est une équation aux dérivées partielles posée dans un espace fonctionnel dont la dépendance
spatiale croit exponentiellement avec le nombre N de particules décrites, et pour laquelle la recherche de
solutions explicites est très difficile. Des approches numériques issues de la simulation des équations aux
dérivées partielles, comme celles des éléments ou des volumes finis, sont dès lors cantonnées à l’étude d’un
faible nombre de particules, et échouent en particulier à décrire la situation limite d’un nombre infini de
particules, aussi appelée limite thermodynamique.

Ce constat explique le recours à des méthodes d’approximations spécifiques, dont l’élaboration remonte
à l’avènement de la théorie de la mécanique quantique elle-même. L’exemple archétypique et primordial
de ces méthodes est certainement la théorie de Hartree-Fock, dont l’objet d’étude est l’état fondamental
d’une assemblée de fermions en interaction. Sans entrer dans les détails ni le formalisme, indiquons en
résumé que son principe consiste à trouver la meilleure solution approchée parmi les fonctions d’ondes
représentant des électrons non interagissants, les déterminants de Slater. Une fois cette solution trouvée,
l’écart entre celle-ci et la solution exacte décide du caractère corrélé du système : lorsque l’écart est
faible, c’est-à-dire lorsque la solution calculée par la méthode de Hartree-Fock est proche de la solution
exacte, le système est dit faiblement corrélé. Bien entendu, c’est la situation contraire, celle des systèmes
dits fortement corrélés qui motive l’élaboration actuelle de nouvelles méthodes d’approximations, et en
particulier celle des méthodes de plongements.

Bien que le sujet soit encore émergent et que ses contours soient à préciser, on peut dégager de la
littérature existante le principe sur lequel cette nouvelle classe d’approximation repose. Contrairement
à la méthode de Hartree-Fock, les méthodes de plongement approchent la solution exacte en considérant
une collection de sous-problèmes d’électrons interagissant, appelés problèmes d’impureté. Ces derniers
sont formés à la suite d’une décomposition du système original, et sont ainsi définis pour être résolus
efficacement par des méthodes précises. En reportant les détails de la construction de ces problèmes
d’impuretés (celle-ci dépend d’ailleurs de la méthode de plongement considérée), indiquons seulement
que, par un procédé donné, chaque problème d’impureté est obtenu par moyennisation des interactions
extérieures à celui-ci, donnant lieu à l’équivalent quantique d’un champ moyen, de façon analogue à
celui que l’on présente lors de l’étude du modèle d’Ising. Toujours de façon informelle, les méthodes de
plongement peuvent aussi être considérées comme un équivalent quantique des méthodes de décomposition
de domaine des équations aux dérivées partielles.

En se concentrant sur la résolution d’une collection de sous-problèmes, les méthodes de plongement
ont ainsi une complexité algorithmique bien moindre que les approches conventionnelles. C’est d’autant
plus vrai lorsque le système possède une invariance par translation spatiale, réduisant alors la résolution
à celle d’un unique problème d’impureté. Toutefois, et de la même façon que pour le modèle d’Ising, les
méthodes de plongement imposent que les paramètres du champ moyen des problèmes d’impureté soient
cohérents avec la solution obtenue : il s’agit d’une méthode auto-cohérente, qui, sur le plan de l’analyse
mathématique, mène à la résolution d’une équation de point-fixe. La résolution pratique de ces équations
utilise cette formulation, et fait donc appelle à des méthodes itératives, avec accélération ou non.

Malgré l’usage généralisé de ces méthodes, leur étude mathématique est très limitée. Dans cette
thèse, nous nous intéressons en particulier à deux méthodes de plongement : la théorie du plongement
de la matrice densité d’une part (Density Matrix Embedding Theory (DMET)), utilisée essentiellement
en chimie quantique et s’intéressant à la matrice densité réduite à un corps, et la théorie du champ
moyen dynamique d’autre part (Dynamical Mean-Field Theory (DMFT)), davantage utilisée en physique
de la matière condensée et se concentrant sur la fonction de Green à un corps du système. Dans les
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deux cas, l’objectif premier est de montrer leur caractère bien posé, c’est-à-dire l’existence et l’unicité
d’une solution à l’équation de point fixe qui les définit mathématiquement. L’espace dans lequel cette
équation est posée doit répondre à deux obligations: d’une part, il doit assurer le caractère bien posé
de l’équation, et d’autre part, il doit se restreindre aux solutions dites “physiques”, celles qui partagent
certaines propriétés attendues de la solution exacte que la méthode se propose d’approcher.

Cette thèse s’organise donc comme suit. Le premier chapitre constitue une introduction générale,
aux systèmes quantiques fortement corrélés. Il définit les quantités auxquelles les méthodes étudiées
s’intéressent, et présente brièvement la structure de ces méthodes ainsi que les résultats mathématiques
obtenus. Dans le deuxième chapitre, on étudie la théorie du plongement de la matrice densité (DMET).
Le troisième et le quatrième chapitres sont quant à eux consacrés à l’étude de la théorie du champ moyen
dynamique (DMFT), sans puis avec discrétisation. Cet ordre, anti-chronologique pour ce qui relève du
développement des méthodes, est celui que l’auteur a suivi durant son doctorat. Il est motivé par le
fait que les objets impliqués vont par abstraction croissante : l’approximation DMET se pose dans un
espace de matrices bien décrit mathématiquement par des travaux antérieurs, alors que l’approximation
DMFT nécessite l’introduction des fonctions de Nevanlinna-Pick, dont l’usage en mathématiques de la
mécanique quantique est peu répandu.

Chapitre 1 : introduction générale aux méthodes de plongement

Le premier chapitre introduit et motive les méthodes de plongement. Partant d’une expérience de
lévitation d’un aimant au-dessus d’un supraconducteur, on présente d’abord un modèle minimaliste
d’électrons en interaction, le modèle de Hubbard. Ce modèle est présenté pour deux raisons : d’une
part, il intéresse aussi bien le champ de la matière condensée que celui de la chimie quantique, modèle
plus connu par ce dernier sous le nom de Pariser-Parr-Pople, et d’autre part, c’est la résolution approchée
de ce modèle qui a motivé l’élaboration de la première méthode de plongement, la théorie du champ
moyen dynamique.

On présente ensuite les deux quantités d’intérêt des méthodes de plongement considérées. Le formal-
isme adéquat pour une présentation unifiée de ces dernières dans les situations qui intéressent les deux
méthodes est celui de la seconde quantification pour un système fermionique, dont les grandes lignes
sont rappelées. On introduit alors la matrice densité réduite à un corps d’un tel état, et on détaille
les propriétés de cette dernière dans le cas d’un état déterminant de Slater et dans celui d’un état de
Gibbs. La partie la plus importante de l’introduction se concentre alors sur le cadre mathématique des
fonctions de Green quantiques à un corps : le formalisme introduit permet de voir cette dernière comme
une généralisation dynamique de la matrice densité réduite à un corps. On introduit pour ce faire la
notion d’état stationnaire d’un Hamiltonien donné, qui englobe les états propres de ce dernier ainsi que
l’état de Gibbs associé, et on définit alors les propagateurs de particule et de trou. On calcule alors
l’expression de ces derniers dans le cas d’un système de fermions non interagissant (le Hamiltonien à N
corps est construit à partir d’un Hamiltonien à un corps), explicitant ainsi le lien entre les propagateurs
et la matrice densité réduite à un corps. Cette situation est aussi celle dans laquelle les fonctions de
Green quantiques à un corps (ordonnée en temps, avancée et retardée), introduites à cet endroit, sont
effectivement des fonctions de Green de l’opérateur différentiel impliqué dans l’équation de Schrödinger
à un corps. On introduit alors la transformée de Fourier généralisée de ces fonctions (définie dans le
demi-plan complexe supérieur), qui, toujours dans le cadre d’un système de fermions non interagissant,
se révèle être la résolvante de l’Hamiltonien à un corps. Dans le cas général d’un Hamiltonien quelconque,
les fonctions de Green quantique à un corps ne sont plus les fonctions de Green d’un opérateur différentiel
donné. Cependant, et pourvu que celle-ci soit bien définie, leur transformée de Fourier généralisée définit
une fonction de Nevanlinna-Pick à valeur dans l’ensemble des opérateurs bornés. Cette propriété permet
alors d’introduire et de discuter du contenu physique de la mesure spectrale associée, en comparant la
représentation intégrale des fonctions de Nevanlinna-Pick et celle de Källen-Lehmann des fonctions de
Green quantiques à un corps.

Cette introduction générale se conclut par une présentation des deux méthodes dans l’ordre inverse de
celui choisi pour cette thèse, afin de proposer une perspective différente. Pour se démarquer plus encore
des présentations individuelles de ces méthodes dans les chapitres qui leur sont dédiés, la théorie du
plongement de la matrice densité est présentée d’une manière différente et plus concise, et que les lecteurs
habitués aux méthodes issues du champ de l’information quantique apprécieront peut-être davantage. Les
contributions mathématiques y sont alors résumées et un tableau récapitulatif permet de comparer les
deux méthodes. Enfin, quelques perspectives sont dégagées, essentiellement concernant la théorie du
champ moyen dynamique.
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Chapitre 2 : la théorie du plongement de la matrice densité (DMET)

Dans le deuxième chapitre, on s’intéresse à la théorie du plongement de la matrice densité. Ce chapitre
est tiré d’un article coécrit avec Éric Cancès, Fabian Faulstich, Antoine Levitt et Élöıse Letournel.

Comme annoncé dans l’article introduisant cette méthode, la théorie du plongement de la matrice
densité se veut être une “alternative plus simple” à la théorie du champ moyen dynamique. D’une part,
elle se concentre sur la matrice densité réduite à un corps de l’état fondamental (une quantité statique,
par opposition à la fonction de Green) D’autre part, les problèmes d’impureté sont de dimension finie.
Cette approche permet de mobiliser, lors de l’étape de résolution de ces problèmes, des solveurs précis
et bien connus de la communauté de la chimie quantique (méthode Full Configuration Interaction (FCI)
par exemple). Pour cette raison, l’étape impliquant la résolution commune des problèmes d’impureté
porte le nom de “solveur haut niveau” (high-level solver). Par opposition à ce dernier, la boucle de
rétroaction (qui permet de définir le problème de point fixe) porte elle le nom de “solveur bas niveau”
(low-level solver), car il est attendu que cette étape fasse appel à des méthodes moins précises et donc
moins coûteuses (méthode de Hartree-Fock par exemple). Cette méthode s’applique à des problèmes
issus de la chimie quantique, pour lequel le Hamiltonien est constitué de deux termes : l’un modélise le
comportement individuel des électrons, l’autre les interactions entre ces électrons.

Dans cette partie, on introduit la première analyse mathématique de cette méthode. L’approche
adoptée trouve son origine dans l’affirmation selon laquelle cette théorie serait exacte dans la limite
non-interagissante (de façon analogue à la théorie du champ moyen dynamique) : l’analyse est d’abord
entreprise dans cette limite, puis étendue à la limite faiblement interagissante.

Ainsi, après une introduction permettant de formaliser mathématiquement cette méthode, on prouve
d’abord que, dans la limite non-interagissante et sous des hypothèses raisonnables, la matrice densité
réduite à un corps exacte est effectivement solution de l’équation de point de fixe de cette méthode. Toute-
fois, rien n’indique que cette solution est unique (des résultats numériques vont d’ailleurs dans le sens
contraire de cette affirmation) : on se contente donc, ensuite et sous deux hypothèses supplémentaires, de
prouver l’existence et l’unicité d’une solution dans le voisinage de la solution exacte dans la limite faible-
ment interagissante. De plus, on montre que cette solution est analytique en le paramètre d’interaction,
tout comme la solution exacte. Dans cette limite, la théorie du plongement de la matrice densité fournit
donc une approximation “physique” de la matrice densité réduite à un corps, au sens où la solution
approchée partage cette propriétés de la solution exacte. Toujours dans cette limite faiblement interagis-
sante, on montre enfin que la solution fournie par la méthode est exacte au premier ordre en le paramètre
d’interaction entre les électrons.

On complète alors cette analyse mathématique par une étude numérique pour deux systèmes, l’un
impliquant dix atomes d’hydrogène et l’autre six. Pour le deuxième système, les atomes sont placés
dans une configuration paramétrée par un angle donné : en faisant varier cet angle, on montre alors
numériquement que, a priori, la solution approchée n’est exacte qu’au premier ordre en le paramètre
d’interaction. Toujours en variant la configuration de ces atomes, on montre que pour certaines valeurs
de l’angle violant les hypothèses nécessaires au théorème d’unicité, il existe plusieurs solutions à l’équation
de point fixe posée.

Chapitre 3 : la théorie du champ moyen dynamique (DMFT)

Le troisième chapitre porte sur la théorie du champ moyen dynamique. Ce chapitre est tiré d’une
prépublication coécrite avec Éric Cancès et Solal Perrin-Roussel.

Par opposition au chapitre précédent, la théorie du champ moyen dynamique cherche elle à approcher
une quantité réduite dépendante du temps d’un système quantique : la fonction de Green quantique à un
corps associée à un état de Gibbs. Bien qu’elle ait été étendue par la suite à des modèles plus généraux,
en particulier lorsqu’elle est combinée à d’autres méthodes telles que la théorie de la fonctionnelle de
la densité , la DMFT cherche, dans sa version primitive, à approcher la fonction de Green d’un modèle
de Hubbard. Pour ce faire, elle procède de façon analogue à la théorie de champ moyen du modèle
de Ising. En premier lieu, on réalise une partition du graphe en une collection de sous-graphes. À
chaque sous-graphe est ensuite associé un problème d’impureté de Anderson, pour lequel l’impureté est
spécifiée par le sous-graphe, alors que le bain ainsi que son couplage à l’impureté sont les inconnues de
la théorie. Ces derniers, représentés par leur fonction d’hybridation, sont choisis de sorte à satisfaire une
équation d’auto-cohérence formulée à l’aide de la self-énergie des problèmes d’impureté et de la fonction
de Green non-interagissante du modèle de Hubbard. Cette équation d’auto-cohérence garantit en outre le
caractère exact de cette méthode dans les situations limites des électrons non interagissants et strictement
interagissant.
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Dans cette partie, on propose donc la première analyse mathématique des équations de la théorie du
champ moyen dynamique, appliquée à un modèle de Hubbard et pour un solveur d’impureté spécifique,
le solveur Iterated Perturbation Theory (IPT).

Après une remise en contexte dans la première partie, la cadre mathématique et l’approximation
physique en question sont introduits. On y rappelle les définitions et les propriétés de la fonction de
Green à un corps, puis on introduit la self-énergie pour un espace de Hilbert à une particule de dimension
finie. Cette quantité intermédiaire est centrale dans la théorie du champ moyen dynamique : après
avoir rappelé la définition du modèle de Hubbard, on présente le modèle d’impureté de Anderson, pour
lequel la self-énergie se révèle être un opérateur localisé sur l’impureté. C’est cette propriété qui motive
l’approximation de la théorie du champ moyen dynamique, qui, à un modèle de Hubbard, associe une
collection de modèles d’impureté de Anderson. Cette association est présentée avec tout le formalisme
mathématique nécessaire (en particulier, grâce au langage de la théorie des graphes), et discutée dans
les limites triviales d’électrons non interagissants et strictement interagissants. On présente alors le
solveur d’impureté IPT. Cette notion nécessite l’introduction d’un formalisme propre aux fonctions de
Green associées aux états de Gibbs, le formalisme dit de Matsubara. On montre en particulier le lien
qu’entretient ce dernier avec le formalisme des fonctions de Green introduites jusqu’ici, avant de présenter
le solveur IPT pour un système invariant par translation et paramagnétique. Cette section se conclut
par la présentation des équations IPT-DMFT, dont on se propose de faire l’analyse mathématique.

Dans la troisième partie, on commence par montrer le lien entre, d’une part, les fonctions de Green,
la self-énergie et la fonction d’hybridation, et d’autre part, les fonctions de Nevanlinna-Pick : à un
signe près, ces quantités issues de la physique sont des fonctions de Nevanlinna-Pick à valeurs opérateur.
C’est cette propriété qui définit les solutions dites ”physiques” aux équations auxquelles on s’intéresse.
On montre ensuite l’absence de solutions définies par un bain de dimension finie. Cette proposition
motive l’extension du domaine à celui de fonctions représentant un bain de dimension infinie, pour lequel
on montre l’existence de solution(s). La preuve est basée sur un théorème de point fixe de Schauder,
après avoir reformulé le problème en termes de mesures de probabilité via la représentation intégrale des
fonctions de Nevanlinna-Pick. En corollaire de la preuve, on montre que toute solution aux équations
IPT-DMFT ont une mesure de Nevanlinna Riesz admettant des moments à tout ordre.

Chapitre 4 : étude d’un schéma de discrétisation des équations IPT-DMFT

Dans ce dernier chapitre, on s’intéresse à un schéma de discrétisation des équations IPT-DMFT. Ce
chapitre est tiré d’un article en cours de rédaction avec Éric Cancès et Solal Perrin-Roussel.

L’intérêt majeur des méthodes de plongement réside dans leur capacité à fournir une approximation
numérique des quantités auxquelles elles s’intéressent. C’est le cas de la théorie du plongement de la
matrice densité, qui, telle que présentée et étudiée au chapitre 2, est formulée dans un espace de dimension
finie et ne nécessite donc pas a priori, de schéma de discrétisation supplémentaire. En revanche, on a
montré dans le chapitre précédent que les équations IPT-DMFT admettent une solution lorsqu’elles sont
formulées dans un espace de fonctions de Nevanlinna-Pick. Cet espace n’est pas de dimension finie, et
toute approche numérique nécessite donc une discrétisation des équations étudiées jusqu’ici.

On s’intéresse plus particulièrement aux équations discrétisées aux fréquences dites de Matsubara
(aussi appelées “fréquences imaginaires”) : les fonctions sont remplacées par leur évaluation en un en-
semble discret de points également espacés sur l’axe imaginaire pur, les fréquences de Matsubara fermion-
iques. Cette méthode de discrétisation est naturelle lorsque l’on utilise le solveur IPT dans sa version
continue : celui-ci ne nécessite que la donnée de la fonction d’hybridation en ces points, et fournit la self-
énergie à partir de ces mêmes points. Elle permettrait, pour un nombre infini de fréquences de Matsubara,
d’obtenir la solution dans le demi-plan complexe supérieur tout entier par prolongement analytique. En
revanche, pour un nombre fini de fréquence, le solveur IPT n’a pas accès à l’intégralité des fréquences
de Matsubara : on doit donc étudier une version approchée de ce dernier, pour lequel aucun résultat
mathématique précédemment établi ne s’applique directement.

Dans ce chapitre, on présente d’abord la méthode et les équations étudiées. Après un bref rappel
du formalisme de Matsubara, on définit les équations concernées sont définies. La différence essentielle
avec le chapitre précédent réside dans le fait que ces équations ne sont pas adaptées au formalisme des
fonctions de Nevanlinna-Pick. Pour cette raison, on relaxe le critère de solution “physique”, en imposant
seulement que les solutions soient (à un signe un près) des vecteurs aux composantes dans le demi-plan
supérieur.

On montre dans la deuxième partie un théorème garantissant l’existence de solutions, uniformément
en le paramètre d’interaction, pourvu que les autres paramètres du modèle et de l’approximation DMFT
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respectent une certaine inégalité. La preuve est basée sur le théorème de Brouwer, ainsi que des esti-
mations des différentes quantités impliquées dans ce formalisme, et ne fait aucun usage de la théorie des
fonctions de Nevanlinna-Pick.

Dans la section qui suit, on effectue des tests numériques en implémentant un algorithme itératif basé
sur cette discrétisation, grâce à la librairie TRIQS. On montre alors numériquement la transition de Mott
ayant lieu pour un modèle de Hubbard, telle que prévue par l’approximation DMFT discrétisée. On
s’intéresse ensuite à la convergence de l’algorithme: on discute en particulier du rôle de la température et
du paramètre d’interaction entre les électrons dans celle-ci. Guidé par cette étude numérique, on exhibe
d’ailleurs une solution aux équations qui ne satisfait pas au critère minimal de solution physique défini
au préalable.

Cette étude est cohérente avec le résultat d’unicité présenté dans la dernière partie : on montre que,
pourvu que la température soit suffisamment élevée (relativement aux autres grandeurs du système), la
solution est unique et peut être obtenue à l’aide d’une méthode itérative directe. La preuve de ce dernier
théorème repose sur le théorème de point fixe de Picard.
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cette thèse.
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This thesis is devoted to the mathematical and numerical analysis of embedding methods in quantum
mechanics. In this chapter, we introduce these methods and the context in which they emerged: the
study of strongly correlated systems, for which a complete theory has not yet been established. We begin
with a physical motivation, by introducing a concrete and prototypical example of strongly correlated
material, namely some high critical temperature superconductors, to give the reader an idea of the stakes
involved in research in this area of physics. We then present the Hubbard model, its various physical
realizations and what is known about it analytically. This will motivate the introduction of reduced
quantities, namely the one-body density matrix and one-body Green’s functions, after a brief reminder
of the second quantization. Special emphasis will be placed on quantum Green’s functions, which are
widely used in physics but little treated from a mathematical-physics point of view. Once these notions
are defined, we finally introduce the two embedding methods that we deal with in this thesis, Dynamical
Mean-Field Theory (DMFT) (based on one-body Green’s functions) and Density Matrix Embedding
Theory (DMET) (based on one-body density matrices), and describe the contributions of this thesis. We
conclude this introduction with perspectives and what we consider to be interesting problems to discuss
in the (near) future.

1.1 Strongly correlated materials: motivations for the Hubbard
model

1.1.1 Motivation: high Tc superconductivity

Introductory experiment Let us begin with the description of an experiment that we can reproduce
at École des Ponts: consider a normal magnet, placed on top of a button made out of a certain ceramic
that has no magnetic properties at room temperature. These two are placed in a cryostat in which we
pour liquid nitrogen (Figure 1.1a). The liquid boils instantly, and a few seconds after the evaporation
slows down, the magnet lifts off the bottom and floats in a stable position above the ceramic (Figure
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(a) Overview of the experimental
setup: liquid nitrogen lies in the
Dewar storage (blue), while the
magnet (metallic) is placed on top
of the ceramic button (black), the
two later being placed in the cryo-
stat (beige). The white fumes are
due to the solidification of water
vapor when it comes into contact
with cold nitrogen vapor.

(b) A few seconds after pouring,
the liquid nitrogen stops boiling,
and the magnet lifts off the ce-
ramic. The latter two are then re-
moved from the cryostat to make
the levitation easier to visualize.
Note again the white fumes exhal-
ing from the ceramic, due to the
solidification of ambient water va-
por near the cold ceramic.

(c) When the magnet levitates, it
can perturbed a little with the
tip of a tweezers without caus-
ing it to fall: the levitation is
stable, which means, according
to Earnshaw’s theorem, that the
magnetic properties of the ceramic
at a sufficiently low temperature
are not compatible with paramag-
netism/ferromagnetism.

Figure 1.1: Levitation of a magnet over a button of ceramics, cooled down with liquid nitrogen. Ex-
periment carried out at École des Ponts. Credits: F. Chevoir and M. Lemaire (Navier) for the safety
equipment, materials and liquid nitrogen, K. Chikhaoui (student) for the pictures.

1.1b). When the liquid nitrogen is completely evaporated, the system reheats and the magnet lands on
the ceramic.

Let us try to explain the different mechanisms at work in this experiment:

� When we pour liquid nitrogen into the cryostat, it comes into contact with the system which is
much warmer: at ambient pressure, liquid nitrogen is in equilibrium with its vapor at a temperature
of Tl−v = 77 K (-196 °C), while the cryostat and the button of ceramic are at room temperature (of
the order of 300 K / 25 °C). Therefore, heat flows from the latter to liquid nitrogen, which boils:
the liquid-gas phase transition is associated with a latent heat, so that the heat of the ceramic is
absorbed by the change of the physical state of nitrogen. The temperature of liquid nitrogen being
fixed by its equilibrium with its vapor, the ceramic knob eventually reaches the temperature Tl−v.

� As soon as the ceramic knob is cold enough, it exerts a force that lifts the magnet: in addition to
gravity, the only force the magnet is subject to are magnetic forces, so that the ceramic creates a
magnetic field. Since the two bodies are not moving one with respect to the other, and there is
no electric field, we can exclude induction as the origin of this magnetic field. The most convinc-
ing explanation is therefore the following: at a sufficiently low temperature, the ceramic exhibits
magnetic properties.

For most phenomena, magnetic systems can be classified according to their response to magnetic field
intensity: a magnetic system is paramagnetic/ferromagnetic (resp. diamagnetic) if for a given magnetic
field intensity H, the magnetic induction B is greater (resp. smaller) than what it would be in the
vacuum [105, 26]. The described levitation is stable (one can even touch the magnet with the tip of a
tweezers without making it fall, as in Figure 1.1c), which by Earnshaw’s theorem [2] cannot be achieved
with paramagnetism/ferromagnetism: at 77 K, the ceramic is diamagnetic.

Levitation with diamagnetic systems is not specific to this experiment: for example, one can levitate
a thin sheet of pyrolitic graphite over a set of magnets, as shown in Figure 1.2. To explain the big
difference with the previous experiment, we need to introduce the notion of magnetic susceptibility µ: a
homogeneous isotropic diamagnetic medium satisfies the linear constitutive relation

B = µH,
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Figure 1.2: A thin sheet of pyrolitic graphite levitating over a set of magnets. Credits: Splarka - English
Wikipedia, Own work, Public Domain.

where µ is less than the magnetic susceptibility of vacuum µ0. For pyrolitic carbon, µ differs from µ0

by only a few tenth of a percent [37], while in our experiment, (most of) the medium has magnetic
susceptibility µ = 0: inside the ceramic, the magnetic induction is zero B = 0 1.

This effect, discovered in 1933 [33], is known as the Meissner effect: below a certain temperature, called
the critical temperature Tc, some materials are perfectly diamagnetic (i.e. µ = 0). An other crucial and
unrelated property of these materials is the absence of electrical resistivity below the critical temperature,
as already discovered by K. Onnes in 1911 [87]: for this reason, they are referred to as superconductors.
These two properties make superconductors attractive for industrial applications: they can be used in
very-low friction bearings, magnetic sustained trains, generation of high-magnetic fields (for instance for
Nuclear Magnetic Resonances, see the recent breakthrough [21]) and indeed lossless energy transport. At
the time of writing, their usage is limited by the cost related to their refrigeration: in spite of a global
research effort [20], no superconductor phase has yet been observed in ambient temperature and pressure
conditions [38], and no general theory accounting for ambient critical temperature exists.

Lack of a microscopic theory for cuprate-based superconductors: Many attempts have been
made to provide a microscopic theory of superconductivity. The most fundamental and generally accepted
theory is the Bardeen-Cooper-Schrieffer (BCS) theory [9]. We will not detail its derivation nor its origins,
and refer to [34, 35, 49] for a mathematical approach to this theory and how it relates to other models such
as the Ginzburg-Landau theory. Suffice it to say that this theory is based on a phonon-mediated attractive
interaction model for electrons, and is able to estimate the maximum critical temperature Tc, which is
found to be of the order of 20K [22], much colder than the temperature of liquid nitrogen. Therefore, the
ceramic we have used in the experiment cannot be described by conventional superconductivity theory,
and is called a high-Tc superconductor.

A common classification of high-Tc superconductors is based on their chemical composition. The
ceramic presented in the experiment is a crystalline material with unit cell represented in Figure 1.3a,
compound of yttrium, barium and copper oxide, and admits as chemical composition YBa2Cu3O7−δ
where δ ∈ [0, 1] is a doping parameter controlled experimentally during the synthesis [108, 106]: it
belongs to the so-called group of cuprates high-Tc superconductors, for whose discovery [10] the 1987
Nobel prize was awarded to J. Bednorz and K. Müller. A shared feature of the compounds of this family
is the presence of CuO2 planes as illustrated in Figure 1.3b. These planes are considered to be the
medium for the superconducting charge carriers, while the rest of the crystal controls the amount and
presence of electrons in these planes (see [110] for a recent direct evidence).

As we will see in the next section, many models attempt to describe these materials. Contrarily to the
BCS theory, a whole class of them try to explain the observed superconductivity in terms of electronic
and magnetic effects on the copper ions of these planes [5, 6, 111] rather than in terms of coupling to the
phonon modes of the ionic lattice. A prototypical example of this is presented below, and is referred to
the Hubbard model.

1This is a bit oversimplified: with this particular shape, levitation would not be stable if the whole of the ceramic knob
where perfectly diamagnetic. In practice, some localized regions called vertices remain in the conventional state while the
bulk of the body is actually perfectly diamagnetic. The physics of these vertices is well described by the well-established
Ginzburg-Landau model and we refer to [96] for an detailed discussion of this model. For the purposes of this experiment,
the double image dipole model [53], which assumes the existence of vertices and the perfect diamagnetism of the bulk of
the ceramic, is sufficient to explain the stability.
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(a) Unit cell of YBa2Cu3O7 (b) CuO2 planes, characteristic to cuprate superconductors.

Figure 1.3: Unit cell of YBa2Cu3O7 (left) and CuO2 planes (right). Yttrium (electric blue) is sandwiched
between two copper (orange-brown) oxide (red) squares, which in turn are sandwiched between two
barium (green) elements. The (two parallel) CuO2 planes are obtained after replicating the unit cell along
the two directions orthogonal to the Ba-Y-Ba axis. Credits: Ben Mills - Own work, Public Domain.

1.1.2 Fermionic Hubbard model

In this thesis, we will not introduce quantum physics in detail, and refer to [93, 23] for a general overview
and [50, 63] for a first mathematical approach.

Originally introduced in chemistry to provide with a minimal model for interacting electrons in un-
saturated conjugated hydrocarbons [89, 91], the Hubbard model erupted in condensed matter physics
[52, 47, 57, 3] to report on magnetic properties of crystalline materials with narrow energy bands. From
the perspective of magnetic materials (resp. unsaturated conjugated hydrocarbons), the Hubbard model
can be seen as an extension of the tight-binding model [7, 59] (resp. the Hückel method [109]), the
latter being much more founded mathematically [32, 95]. In this approach, the Hubbard model is most
relevant for almost flat bands, where the velocity of single electrons is low enough for them to interact
significantly.

This model describes particles evolving in a static medium (in the atomic picture, it focuses on valence
electrons while ions are fixed as in the Born-Oppenheimer approximation [12]). As is the case for periodic
tight-binding models, the spatial representation of electrons is reduced: to be more precise, the position of
an electron is described by a finite collection of orbitals, which can be thought of as localized. For instance,
assuming that electrons are restricted to moving on a torus [0, L), the natural spatial one-particle space
in the continuous approach, L2([0, L),C), is discretized using a set (φi)i∈Λ of L = |Λ| localized orbitals
(for particles moving on R, one can choose a finite set of exponentially localized Wannier functions [76],
if such functions exist [88]). In any case, the spatial description of single electrons is described by a
finite set Λ of what are commonly called sites and which we call Hubbard vertices in this presentation for
reasons that will become clearer in the following. Taking into account the spin degrees of freedom, the
one-particle space H is therefore the 2L dimensional space spanned by the basis B1 given by

H = Span(B1), B1 = (φi ⊗ σ)i∈Λ,σ∈{↑,↓} = B↑ t B↓. (1.1)

Now we will describe what the model aims at taking into account. This is encoded in the Hamiltonian,
which is best expressed using second quantization techniques. We will recall this formalism in Section 1.2,
and for now refer the unfamiliar reader to [51, 101, 86, 75] for a chemistry/physics orientated presentation
of these notions, and [13],[14] for a mathematical overview about this formalism. Below are the effects
included in the model.

� On the one hand, it aims to describe the tunneling effect that single electrons experience, just as in
tight-binding models: electrons can jump from one site to an neighbouring one. To model this, we
associate each allowed transition with an edge, forming the set E of Hubbard edges: the strength of
the tunneling effect depends on the corresponding sites and is modeled by the hopping matrix T,
which can be chosen real-valued in the absence of magnetic field T : E → R.
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(a) The Pariser-Parr-Pople (PPP) model of ben-
zene (GH = C6, the 6-vertex cyclic graph).

(b) The square grid graph, used to model truncated
square lattices.

Figure 1.4: Schematic of the two effects modeled by the Hubbard model (left), on the cyclic graph (left).
The square-grid graph (right) is widely used to provide with 2d models of cuprates.

� On the other hand, it includes interactions between electrons. In the picture where the sites model
local (in space) one-electron states, the model includes only the shortest (in range) interactions,
namely when two electrons are on the same site: the strength of this interaction is governed by the
on-site repulsion U : Λ→ R.

Denoting by
(
âi,σ/â

†
i,σ

)
i∈Λ,σ∈{↑,↓}

the annihilation/creation operators associated to the one-particle

states that span H and satisfying the Canonical Anti-commutation Relations (see Section 1.2), the Hub-
bard Hamiltonian thus reads

ĤH =
∑

{i,j}∈E,σ∈{↑,↓}

Ti,j

(
â†i,σâj,σ + â†j,σâi,σ

)
+
∑
i∈Λ

Uin̂i,↑n̂i,↓, with n̂i,σ = â†i,σâi,σ

where the first term models the tunnel effect, and the second the local interaction. These two effects are
shown schematically in Figure 1.4a, and the advantage of the graph formulation GH = (Λ, E) (which is not
new [81, 82, 8]) lies in its generality, placing unsaturated molecules and truncated lattices with arbitrary
hopping on the same ground. Another advantage of this formulation is that it makes the Dynamical
Mean-Field Theory (DMFT) easier to express as we will see in Section 1.3.1.

To get a first insight into this model, let us have a look at two simplifying limits:

� When U = 0, the model reduces precisely to the aforementioned tight-binding model. Note that in
this setting, the Hamiltonian describes a set of non-interacting electrons, which greatly reduces its
complexity: all its properties can be derived from studying the one-particle Hamiltonian as in band
theory [7, 63]. The matrix of the latter in the basis set B1 even reduces to the block diagonal matrix
Adj(GH , T)⊕Adj(GH , T) where Adj(GH , T) is the adjacency matrix of the weighted graph (GH , T),
about which much is known for graphs representing common lattices. For example, eigenstates of
the model designed with GH being the d-dimensional grid with periodic boundary conditions C�d

N

are delocalized (in the picture where sites represent localized orbitals).

� If T = 0, the Hubbard Hamiltonian is already diagonal in the basis B1: the model reduces to a
collection of idealized one-orbital atoms (in the atomic picture), whose energy is spin-independent
and depends only on the doubly occupied sites. In this setting, the model describes a set of non-
interacting sites (and strictly correlated electrons), and unlike the prior setting, eigenstates are
localized (still in the picture where sites represent localized orbitals).

For generic fillings, the first limit describes a metal, while the second describes an insulator : as
the on-site repulsion U increases, a metal-to-insulator phase transition is expected to occur. This
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(a) Another experimental realization of the
Hubbard model with atoms, trapped in an
optical lattice. In this experiment, the “sites”
correspond to optical wells, and the particles
described are atoms rather than electrons.

(b) An example of moire bilayer material, a
low angle twisted bilayer graphene that can
be described by Hubbard models.

Figure 1.5: Two others realizations of the Hubbard model: atoms in an optical lattice (left) and moire
materials (right). Credits: Jpagett - Own work, CC BY-SA 4.0 (left), Ponor - Own work, CC BY-SA 4.0
(right)2.

interaction-driven phase transition is known as the Mott transition [85, 84, 6, 19, 30] and represents
a first example of strongly correlated effect. Note also that both limits are incompatible with ferromag-
netism/antiferromagnetism: however, spin-ordering is expected to appear in between. As was shown
mathematically soon after its introduction in condensed matter physics (see the review [64] for a general
discussion of mathematical results in this field), these phase transitions are strongly dependent on the
graph involved: for instance, the seminal paper [65, 66] shows the absence of Mott transition for the
ground state of the ”1d chain” (the cyclic graph, as depicted in Figure 1.4a), while ferromagnetism is
shown to occur in ground states of line graphs such as the kagome lattice [81, 82, 83].

When it comes to cuprates, several Hubbard models have been derived since the discovery of their
superconducting phase: for example, it can be derived from a Wannier function approach as in [5, 6, 111])
or as a specific low coupling limit of the Emery model [27, 28] (which was introduced as an “extended
Hubbard model ”, and is now referred to as a three-band Hubbard model [24, 54]), both being based
on the square-grid graph (and its various next-nearest-neighbor extensions). More than 30 years after
the first models were introduced, these derivations still form an active research area [72, 54], due to
the very complexity of the associated Hubbard model. At the time of writing, we are not aware of any
mathematical derivation of this model from first principles of quantum mechanics for fermions (see the
unpublished [36] for a derivation related to the bosonic case), and this matter is far beyond the scope
of this manuscript. It is rather a starting point for the derivation of other models, with for instance the
derivation of the Heisenberg model in the U →∞ limit [64, 3], or, for bosons, the derivation of the discrete
non-linear Schrödinger equation as a mean-field limit [90]. The Hubbard model is also motivated by the
study of optical lattices [29] and moire bilayer materials [107], the two being complementary tunable
platforms to explore the different parameter regimes, shedding new light from experiments on strongly
correlated effects.

In this context, embedding methods have emerged as new approximations to better understand strongly
correlated systems. In this manuscript, we will present two related methods, the Dynamical Mean-Field
Theory (DMFT) and a “simple alternative” to it [60], the Density Matrix Embedding Theory (DMET).
The general idea of these two embedding schemes is to design approximations for reduced quantities,
instead of wave-functions methods like (generalized) Hartree-Fock [8]. The first theory, DMFT, focuses
on the quantum one-body Green’s function, while DMET aims to provide an approximation of the
one-body reduced density matrix. In the next section, we will introduce these objects, and describe
their properties, both from a physical and mathematical point of view. This will pave the way for the
introduction of the embedding methods we are interested in.

2https://commons.wikimedia.org/w/index.php?curid=97679108, and
https://commons.wikimedia.org/w/index.php?curid=91250759
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1.2 One-particle reduced quantities in quantum mechanics

In this section, we introduce the main quantities on which our embedding methods focus. After a
reminder about second quantization, we introduce the well-known one-particle reduced density matrix
γΩ, and give some of its properties and uses. We then switch to the dynamical setting, by introducing
quantum equilibrium one-body Green’s functions. As already mentioned, these quantities are of general
use in the physical community, much less in the mathematical one. In order to define them without
difficulty, we restrict ourselves to the fermionic setting, where the annihilation/creation operators are
bounded. We discuss their properties, and clarify the origin of their designation by focusing on the case
of non-interacting Hamiltonians. We also introduce their Fourier transform in the appropriate sense,
showing the link between different approaches and the relevance of Pick functions in this setting.

1.2.1 Second quantization, one-particle reduced density matrix

We place ourselves in a similar setting to that of [14], and we refer the reader to this reference for a
general introduction. A pedagogical introduction can also be found in [8] and [102].

The setting is as follows: let the Hilbert space H endowed with the sesquilinear inner product 〈·, ·〉 be
the one-particle space. The fermionic Fock space F , which describes statistical states with an arbitrary
number of fermions, is defined as

F = P−

(
F̃
)
, F̃ =

+∞⊕
n=0

H⊗n, H⊗n =

n⊗
H, H⊗0 = C,

where the closure is taken for the norm induced by the canonical Fock inner product inherited from
〈·, ·〉, and the operator P− is the projection defined on tensor products with for all n ∈ N∗, for all
φ1, . . . , φn ∈ H,

P−(φ1 ⊗ . . .⊗ φn) =
1

n!

∑
σ∈Sn

ε(σ)φσ(1) ⊗ . . .⊗ φσ(n),

where Sn is the set of permutations with n elements, and extended to F̃ by linearity and continuity. The
creation/annihilation operators â†φ/âφ are then defined as follows: for all φ ∈ H, first define ã†φ and ãφ
on finite linear combinations of tensor products with, for all n ∈ N∗, for all φ1, . . . , φn ∈ H, for all λ ∈ C,

ã†φ (φ1 ⊗ . . .⊗ φn) = (
√
n+ 1)φ⊗ φ1 . . .⊗ φn, ã†φλ = λφ,

ãφ (φ1 ⊗ . . .⊗ φn) = (
√
n〈φ, φ1〉)φ2 . . .⊗ φn, ãφλ = 0.

The fermionic creation/annihilation operators â†φ, âφ are then defined on linear combinations of tensor
products by

â†φ = P−ã
†
φP−, âφ = P−ãφP−

They satisfy the Canonical Anti-commutation Relations (CAR): for all φ, φ′ ∈ H, we have

{âφ, âφ′} = {â†φ, â
†
φ′} = 0, {âφ, â†φ′} = 〈φ, φ′〉

where {·, ·} stands for the anticommutator. Using the adjoint relation â†φ = (âφ) which holds for linear

combinations of tensor products, it follows that the creation/annihiliation operators â†φ, âφ are bounded,
hence admit bounded extensions to F , with

‖âφ‖ = ‖â†φ‖ = ‖φ‖ (1.2)

Note also that φ 7→ â†φ is linear, and that φ 7→ âφ is anti-linear. They belong to the C∗-algebra B(F) of
bounded operators on F . A state Ω is a linear functional on B(F), that is positive, meaning it satisfies for
all Ô ∈ B(F), Ω(Ô†Ô) ≥ 0, and of norm 1, that is sup{|Ω(Ô)|, ‖Ô‖ = 1} = 1. They are a generalization
of quantum states to the statistical mechanics setting, and we will come back to this point later. For
now, we define the one-particle reduced density matrix [102, Chapter 8].

Definition 1.2.1 (One-particle reduced density matrix γΩ). The one-particle reduced density matrix γΩ

associated to Ω is the unique self-adjoint operator in B(H) represented by the sesquilinear form defined
by for all φ, φ′ ∈ H,

〈φ, γΩφ
′〉 = Ω

(
â†φ′ âφ

)
.
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The operator γΩ is positive because Ω is also positive, self-adjoint by the fact that positivity of Ω

implies Ω(Ô†) = Ω(Ô) for all Ô ∈ B(F), and it satisfies 0 ≤ γΩ ≤ 1 in the operator sense (this follows
from (1.2) and the fact that states are of norm unity). At this point, we will provide examples to help
the reader grasp its meaning. We will abbreviate it by 1-pdm [8, 102] or 1-RDM [17] indifferently in the
following.

Suppose we want to describe a quantum system of N particles, with the wave function ΨN ∈ HN =
P−
(
H⊗N

)
such that ‖Ψ‖ = 1. In the formalism of second quantization, it is described by the vector

state ΩΨN : B(F) 3 Ô 7→ 〈ΨN , ÔΨN 〉. From this example, we see that states defined as linear forms
provide with a generalization of the average value of observables. For such a state, the 1-pdm γΨ is very
useful to characterize the wave function from which it is defined: it is easy to show that the number of
particles N is equal to the trace of γΨ (which is trace-class in this setting):

Tr(γΨ) = N.

Another crucial property in this setting is the following equivalence: γΨ is a projector if and only if there
exists φ1, . . . , φN ∈ H such that

Ψ = â†φ1
. . . â†φN |∅〉, (1.3)

where |∅〉 ∈ C, ‖|∅〉‖ = 1 represents the vacuum, and in this case Ran(γΨ) = Span(φi)i∈[[1,N ]]. Such a wave
function is called the Slater determinant associated with the one-particle states φ1, . . . , φN (also called
spin-orbitals), and Ran(γΨ) is the so-called occupied spin-orbitals space, while its orthogonal complement
is the virtual spin-orbitals space. These states prove particularly useful for describing non-interacting
fermions: given a one-particle Hamiltonian H0 ∈ S(H), with domain D(H0), its second quantization
dΓ(H0) is defined [14] as the self-adjoint operator which, for all n ∈ N∗, for all φ1, . . . , φn ∈ D(H0),
satisfies

dΓ(H0)P− (φ1 ⊗ . . .⊗ φn) = P−

(
n∑
i=1

φ1 ⊗ . . .⊗H0φi ⊗ . . .⊗ φn
)
.

This Hamiltonian models non-interacting fermions and therefore will be called a non-interacting
Hamiltonian. In this context, an interesting problem in quantum physics is to determine the N -particle
ground state of this Hamiltonian, which is a solution (if it exists) to the following optimization problem:

inf{ΩΨ(dΓ(H0)), Ψ ∈ HN ∩D(dΓ(H0)), ‖Ψ‖ = 1}. (1.4)

Assuming that H0 is bounded from below, this problem is equivalent to the following one, which involves
only 1-pdms γΩ associated with Slater determinants,

inf{Tr(γΩH
0), γ2

Ω = γΩ, Ran(γΩ) ⊂ D(H0), Tr(γΩ) = N}.

This result is at the basis of the Hartree-Fock theory, which provides the ground state of a quantum
system while imposing the latter to be a Slater determinant. We refer the interested reader to [51]
for a general overview about this theory and its augmented versions. Its very great successes led to
many generalizations that we will not cover here: in view of its application to the Hubbard model and
superconductivity, let us only mention the Generalized Hartree-Fock theory [8] which is formulated using
the generalized 1-pdm.

To make things even clearer, we give the expression of γΨ when the one-particle space consists in
the continuous setting H = L2(Rd,C), which represents spinless particles evolving in the d-dimensional
space: for all φ, φ′ ∈ H, we have

〈φ, γΨφ
′〉 =

∫
Rd×Rd

φ(r)γΨ(r, r′)φ′(r′)drdr′, with γΨ(r, r′) = N

∫
R(N−1)d

Ψ(r, ·)Ψ(r′, ·) (1.5)

so that γΨ is a kernel operator: the diagonal elements of the latter coincide with the one-body density,
the key quantity in Density Functional Theory (DFT).

Vector states are included in the more general class of normal states Ω : B(F) 3 Ô 7→ Tr(ρ̂Ô) where ρ̂
is the associated density matrix, a self-adjoint, positive operator satisfying the trace condition Tr(ρ̂) = 1.
In the previous case of a vector state, ρ̂ is the orthogonal projection on Ψ: this fact, in combination with
Equation (1.5), is related to the denomination of the one-particle reduced density matrix: the latter can
be seen as a partial trace of the density matrix.
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Another typical example of normal state is a Gibbs state: for all chemical potential µ ∈ R and inverse

temperature β ∈ R∗+, assuming e−β(Ĥ−µN̂) is trace-class where N̂ = dΓ(1) is the number operator, the
density matrix reads

ρ̂ =
1

Tr(e−β(Ĥ−µN̂))
e−β(Ĥ−µN̂).

In the setting of a non-interacting Hamiltonian dΓ(H0), the trace-class condition is equivalent to

e−βH
0 ∈ S(H) being trace-class as a one-body operator [14, Proposition 5.2.22], and in this case the

1-pdm is given by the well-known Fermi-Dirac distribution:

γΩ =
1

1 + eβ(H0−µ)
.

As we will see in Section 1.3.2, Density Matrix Embedding Theory is formulated in terms of 1-pdms
γΩ (and not density matrices ρ̂!). We postpone its derivation below, and give for now a mathemati-
cal presentation of the objects Dynamical Mean-Field Theory is based on: quantum one-body Green’s
functions.

1.2.2 Quantum one-body Green’s functions

In this section, we introduce quantum one-body Green’s functions, a fundamental concept in condensed
matter physics that has been used for more than half a century.

Their appearance in quantum mechanics is closely related to two other disciplines: quantum field
theory on the one hand, in the generally accepted affiliation [55, 25] of Schwinger’s ideas [99, 100, 74, 98]
and from which it can be seen as an implementation of an elaborated technique in a simpler setting, and
kinetic theory of fluids on the other hand, to which it owes the BBGKY hierarchy (see the series of papers
by M. Born and H. Green [11], and T. Matsubara’s remark about them [77] for this affiliation) and from
which it appears merely as a quantum generalization of the classical notion of dynamical correlation.

In this manuscript, we introduce them from a mathematical perspective, with a presentation that
resembles more the second point of view and fits better with the above presentation of the 1-pdm. This
approach is actually not new, with for instance, the demonstration of the existence of their thermodynamic
limit in [94] based on similar results obtained for the reduced density matrices in [44]. More recently,
the properties of these objects for ground state has been studied in the infinite-dimensional setting of
the GW approximation in [16], and in a finite dimensional setting for various applications, including
DMFT, in [71]. Our presentation lies in between these two milestones, with a general presentation in the
Hilbert space setting, using second quantization formalism, with applications in the finite dimensional
setting when needed. In any case, we will consider equilibrium states, which encompass ground states
and Gibbs states as we detail below. The aim of this section is also to clarify to what extent quantum
Green’s functions are indeed Green’s functions in the sense of fundamental solutions to linear differential
operators. Note also that we do not consider the anomalous setting [69], which is a generalization of
Green’s functions similar as the one that generalizes the 1-pdm in Generalized Hartree-Fock theory [8].

Equilibrium states We place ourselves in the same setting as in the previous section and refer to
Ĥ ∈ S(F) for any self-adjoint operator on the Fock space. In this setting, the dynamics is governed by

the strongly continuous one-parameter unitary group {e−itĤ}t∈R, defined by functional calculus [63]. For
all bounded operator Ô ∈ B(F), we denote by H(Ô) : R → B(F) its Heisenberg picture defined by, for
all t ∈ R,

H(Ô)(t) = eitĤÔe−itĤ

In layman’s terms, the Heisenberg picture of an operator represents its evolution with time under the
dynamics of Ĥ. For the sake of simplicity, we consider only equilibrium states in this thesis, which are
normal states with density matrix ρ̂ such that, for all t ∈ R,

[ρ̂, eitĤ ] = 0.

This assumption, if violated, leads to the much more sophisticated out-of-equilibrium Green’s functions,
about which we are not aware of any mathematical approach and that we do not cover in this document
(see for instance the Schwinger-Keldysh formalism [58, 55, 48]). Our setting includes the cases of vector
states with eigenvectors of Ĥ (provided such vectors exist) and Gibbs state (provided the operator

e−β(Ĥ−µN̂) is trace-class). We are now in position to introduce the particle and hole propagator which
are specific correlations between evolved-in-time annihilation and creation operators.
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Definition 1.2.2 (Particle propagator). Given Ĥ ∈ S(F) a self-adjoint operator and a corresponding
equilibrium state Ω, the particle propagator Pp : R → B(H) is the unique bounded-operator-valued map
with, for all t ∈ R, Pp(t) being represented by the sesquilinear form defined by, for all φ, φ′ ∈ H,

〈φ, Pp(t)φ′〉 = Ω(H(âφ)(t)â†φ′).

Similarly, the hole propagator Ph : R → B(H) is the unique bounded-operator-valued map with, for all
t ∈ R, Ph(t) being represented by the sesquilinear map defined by, for all φ, φ′ ∈ H,

〈φ, Ph(t)φ′〉 = Ω(â†φ′H(âφ)(t)).

In particular, we have ‖Pp(t)‖ ≤ 1, ‖Ph(t)‖ ≤ 1 for all t ∈ R.

The bounds can be proven similarly as for the bound on the 1-pdm. Note that, contrarily to the
latter, the operators Pp(t), Ph(t) are not self-adjoint for generic values of t. Nevertheless, they satisfy the
following adjoint relations: for all t ∈ R,

Pp(t)
† = Pp(−t), Ph(t)† = Ph(−t). (1.6)

Note finally that our definition encompasses correlations between H(âφ)(t) and H(â†φ′)(t
′) for all t, t′ ∈ R:

as expected from a physical intuition, these correlations only depend on time differences (equilibrium
states are time-translation invariant), and one can prove using the cyclicity of the trace that

Ω
(
H(âφ)(t)H(â†φ′)(t

′)
)

= 〈φ, Pp(t− t′)φ′〉, Ω
(
H(â†φ′)(t)H(âφ)(t′)

)
= 〈φ, Ph(t′ − t)φ′〉.

Before we go any further, let us say a few words about their denomination. As for the 1-pdm, it
originates from the setting of vector states ΩΨ with N particles (Ψ ∈ HN ): for such a state, the particle
propagator is given by

〈φ, Pp(t)φ′〉 = 〈â†φe−itĤΨ, e−itĤ â†φ′Ψ〉,
and can be given the following interpretation: assuming that Ĥ is particle conserving 3, it provides a
comparison between two states with N + 1 particles, one being the evolution at time t of â†φ′Ψ, the other

being â†φ applied to the evolution at time t of Ψ. It therefore provides information about how added
particles propagate in the system. Similarly, the hole propagator supply information about how holes
(removing of particles) propagate in the system.

Finally, note that the 1-pdm is related to the two propagators by γΩ = Ph(0) = 1−Pp(0). For arbitrary
time, the relation is in general more complex, apart from the setting of non-interacting Hamiltonians
which we present now. This setting will also motivate the definitions of Green’s functions.

Non-interacting Hamiltonians and Green’s functions

The notion of non-interacting Hamiltonian has already been presented in the previous section: when
it comes to dynamics, the physical intuition is that particles precisely evolve independently one from
another. In mathematical terms, this is ensured by the following property: given a non-interacting
Hamiltonian dΓ(H0) ∈ S(F) being the (self-adjoint) second quantization of the one-particle Hamiltonian
H0 ∈ S(H), the evolution operator reads, for all t ∈ R,

e−itdΓ(H0) = Γ(e−itH
0

) (1.7)

where for all one-particle unitary operator U ∈ B(H), its unitary second quantization Γ(U) is defined
with for all n ∈ N∗, for all φ1, . . . , φn ∈ H, for all λ ∈ C,

Γ(U)P− (φ1 ⊗ . . .⊗ φn) = P− (Uφ1, . . . , Uφn) , Γ(U)λ = λ

The proof of (1.7), based on Stone’s theorem [63], poses no problem and can be found in classical
textbooks [14]. The dynamics is therefore dictated by a strongly continuous unitary operator group that
takes a very simpler form, and we find as a direct consequence that for all φ ∈ H, for all t ∈ R,

H(âφ)(t) = âeitH0φ. (1.8)

In other words, B(F) 3 Ô 7→ H(Ô)(t) is the Bogoliubov transform [14] induced by the unitary eitH
0

. A
consequence of this property is the well-known following property about propagators.

3Meaning that Ĥ and N̂ commute, in the sense that [eitĤ , eisN̂ ] = 0 for all t, s ∈ R [63], which is the case for the
molecular and Hubbard Hamiltonians.
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Proposition 1.2.3 (Particle and hole propagators of a non-interacting Hamiltonian). Given a non-
interacting Hamiltonian dΓ(H0) ∈ S(F) associated to the one-particle Hamiltonian H0 ∈ S(H), the
particle and hole propagators Pp, Ph associated to an equilibrium state Ω read

Pp(t) = e−itH
0

(1− γΩ), Ph(t) = e−itH
0

γΩ, (1.9)

where γΩ is the 1-pdm associated to Ω. In particular, these propagators are continuous for the strong
operator topology. Moreover, they satisfy the following differential equation on the domain of H0, for all
t ∈ R,

i
dP

dt
= H0P.

Proof. We give it for the particle propagator only, the other case being similar. The proof of Equation
(1.9) is a direct consequence of (1.8): for all φ, φ′ ∈ H, for all t ∈ R, we have

〈φ, Pp(t)φ′〉 = Ω(âeitH0φâ
†
φ′) = 〈φ, e−itH0

Pp(0)φ′〉 = 〈φ, e−itH0

(1− γΩ)φ′〉.

As for the continuity, it follows from the continuity of eitH
0

. Moreover, by definition of equilibrium states,
the 1-pdm γΩ and eitH

0

commute for all t ∈ R: using Equation (1.8) and the cyclicity of the trace, we
have for all φ, φ′ ∈ H, for all t ∈ R,

〈φ, e−itH0

γΩe
itH0

φ′〉 = Ω(âeitH0φâ
†
eitH0φ′

) = Tr(e−itdΓ(H0)ρ̂eitdΓ(H0)âφâ
†
φ′) = 〈φ, γΩφ

′〉

using the commutation of ρ̂ with e−itdΓ(H0). This implies that [γΩ, H
0] = 0 on the domain of H0, so that

finally, we have by Stone’s theorem, for all φ in the domain of H0

i
dPp
dt

(t)φ = (1− γΩ)e−itH
0

H0φ = H0Pp(t)φ

Note that stronger continuity is not expected to hold in the general case: for instance, the 1-pdm
associated to the vacuum vector state is 0, so that the particle propagator is precisely e−itH

0

, which from
Stone’s theorem is known to be continuous for the norm topology if and only if H0 is bounded [50].

The above result gives a second insight about the denomination of the propagators: for a vector state
Ψ being a Slater determinant of N eigenstates of H0, the particle propagator describes how particle
added to the virtual orbitals space evolve in time, while the hole propagator describes the evolution of
particles in the occupied orbitals space. This fact shows how complementary these objects are, even in
the non-interacting setting: the one-body time-ordered Green’s function, which we introduce now, makes
use of this property by combining them appropriately.

Definition 1.2.4 (One-body time-ordered Green’s function). Given Ĥ ∈ S(F) a self-adjoint operator
and a corresponding equilibrium state Ω, the one-body time-ordered Green’s function G̃ : R → B(H) is
the map defined by

iG̃ = χR+
Pp − χR∗−Ph,

where χA is the characteristic function of the set A ⊂ R. For all t ∈ R, we have ‖G̃(t)‖ ≤ 1.

As we did for the propagators, let us say a few words about the terminology: “body” encompasses
“particle” and “hole”, and “time-ordered” comes from the fact that, for all t ∈ R, for all φ, φ′ ∈ H, we
have

〈φ, iG̃(t)φ′〉 = Ω
(
T (H(âφ),H(â†φ′))(t, 0)

)
, (1.10)

where for all operator-valued functions R 3 t 7→ Ô(t) ∈ B(F),R 3 t 7→ Ô′(t) ∈ B(F), their fermionic
time-ordered product T (Ô, Ô′) is the operator-valued function R2 → B(F) defined as

T (Ô, Ô′)(t, t′) =

{
Ô(t)Ô′(t′) if t ≥ t’,

−Ô′(t′)Ô(t) otherwise.
(1.11)

In a sense, the time-ordered Green’s function encapsulates both the particle and hole propagators,
making use of the redundancy induced by their adjoint relation (1.6). Finally, “Green’s function” comes
from the following statement, which holds true only in the non-interacting setting.
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Proposition 1.2.5 (Non-interacting one-body time-ordered Green’s function). For a non-interacting
Hamiltonian dΓ(H0), with H0 ∈ S(H), the one-body time-ordered Green’s function satisfies the following
differential equation in the distribution sense for all φ in the domain of H0(

i
d

dt
−H0

)
G̃φ = δ0φ, (1.12)

with the initial condition iG̃(0+) = 1− γΩ in the strong operator topology.

Proof. The proof follows from Proposition 1.2.3, and the fact G̃ has a jump in 0 which is given by

iG̃(0+)− iG̃(0−) = Pp(0
+) + Ph(0−)† = 1− γΩ + Ph(0+) = 1 (1.13)

where all the limits are in the strong operator sense and where we have used the adjoint relation of
Ph.

Other one-body Green’s functions are used, depending on the context in which they can be applied
[45, 74, 56, 55, 73, 75]. Among them, there are the advanced (resp. retarded) Green’s function G̃A (resp.
G̃R), given by

iG̃A = −χR−(Ph + Pp), iG̃R = χR+
(Pp + Ph) . (1.14)

In the non-interacting setting, they reduce to:

iG̃A = −χR−e
−itH0

, iG̃R = χR+
e−itH

0

. (1.15)

Indeed, they also satisfy (1.12) in this setting, but with initial conditions

iG̃A(0+) = 0, iG̃R(0+) = 1. (1.16)

The particle (resp. hole) Green’s function G̃P (resp. G̃H) [16], defined by

G̃P = χR+
Pp, G̃H = −χR∗−P

†
h (1.17)

satisfy, still in the non-interacting setting, the differential equations(
i
d

dt
−H0

)
G̃P = δ0(1− γΩ) (1.18)(

i
d

dt
−H0

)
G̃H = δ0γΩ (1.19)

and therefore are not Green’s functions even in the non-interacting setting. They merely serve as “building
blocks that have to be combined” [75, p.107] to lead to G̃.

For reasons that will become clearer in the following, it proves useful to look at the Green’s functions
in the Fourier domain. For this purpose, the adequate notion is the one of Generalized Fourier Transform
(GFT), already introduced by Titschmarsh in [104]: given f̃ : R→ B(H), the associated GFT f is defined
on the whole upper half-plane C+ = {z ∈ C,=(z) > 0}, by for all z ∈ C+,

f(z) = f+(z) + f−(z)†, with ∀z ∈ C+, f+(z) =

∫
R+

eiztf(t)dt, (1.20)

and ∀z ∈ C−, f−(z) =

∫
R∗−

eiztf(t)dt, (1.21)

where C− = {z ∈ C,=(z) < 0}, provided the integrals make sense for an appropriate operator topology.
This approach has the advantage to circumvent any analytical continuation techniques and is particularly
relevant in the non-interacting setting, as we state now. This result explains the i prefactor present in
all our definitions of Green’s functions.

Proposition 1.2.6 (Non-interacting Green’s functions are resolvents in the Fourier domain). Given
a non-interacting Hamiltonian H0 ∈ S(H), the Generalized Fourier Transforms of the one-body time-
ordered, advanced and retarded Green’s function G : C+ → B(H) of an equilibrium state Ω are well-defined
for the strong operator topology, coincide, and read for all z ∈ C+,

G(z) =
(
z −H0

)−1
. (1.22)

Namely, they are the resolvent of H0, and are independent of the state Ω. We call G0 the non-interacting
Green’s function.
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Proof. The proof is a consequence of [13, Proposition 3.1.6]: for all φ ∈ H, we have in the strong operator
topology, for all z ∈ C+, ∫

R+

eizte−itH
0

dt = i
(
z −H0

)−1
, (1.23)

and similarly, for all z ∈ C−, ∫
R−

eizte−itH
0

dt = −i
(
z −H0

)−1
. (1.24)

It gives immediately the result for the GFT of G̃R. For the advanced, we have, for all z ∈ C−, GA−(z) =(
z −H0

)−1
which gives the awaited result by reflection to C+. Finally, we find, for all z ∈ C+, G+(z) =

(1− γΩ)
(
z −H0

)−1
and, for all z ∈ C−, G−(z) = γΩ

(
z −H0

)−1
from which we conclude.

This result is indeed of paramount importance, and holds only in the non-interacting setting. At this
stage, let us introduce the imaginary part of an operator: for any bounded operator Ô ∈ B(H), it is
defined as

=(Ô) =
1

2i
(Ô − Ô†). (1.25)

For the present case, the non-interacting Green’s function satisfies =(G0(z)) ≤ 0 for all z ∈ C+, and is
indeed analytic on C+. Hence, it is the negative of an operator-valued Pick function [43]. This property
also holds for the interacting Green’s function, but we will not deal with the fully general case here. Let
us only say that in the simpler case of vector state ΩΨ with Ψ an eigenvector of Ĥ (this setting is highly
similar to the one of [16], to which the reader is referred to for more details), we have for all φ, φ′ ∈ H,
for all t ∈ R,

〈φ, Pp(t)φ′〉 = 〈Ψ, âφe−it(Ĥ−EΨ)â†φ′Ψ〉, (1.26)

so that, using the same property as in the proof of Proposition 1.2.6 but for the strongly continuous

one-parameter unitary group eitĤ ∈ B(F), we have for all z ∈ C+,

〈φ,G+(z)φ′〉 = 〈Ψ, âφ
(
z − (Ĥ − EΨ)

)−1

â†φ′Ψ〉 (1.27)

where the GFT makes sense in the weak operator topology as in [16]. This shows in particular that we
have for the GFT of the time-ordered Green’s function

〈φ,=(G+(z))φ〉 = 〈â†φΨ,=(
(
z −

(
Ĥ − EΨ

))−1

)â†φΨ〉 ≤ 0. (1.28)

Similarly, =(G−(z)) ≤ 0 for all z ∈ C+; this shows that the Generalized Fourier Transform of the time-
ordered Green’s function is well defined. In addition with the fact that it is analytic, it is therefore a
negative of an operator-valued Pick function. We then have the following representation property [42]:
there exists a bounded-operator-valued Borel measure A on R, such that

G(z) =

∫
R

1

z − εdA(ε) (1.29)

This measure is known as the spectral function in condensed matter physics and is full of physical
interpretation. For instance, as we mention in Chapter 4, it allows to determine whether an interacting
quantum system is a conductor or not, based on its low energy properties, and reveals (if they exist) the
quasi-particles of the system. Moreover, it is theoretically measurable by Angle Resolved Photo Emission
Spectroscopy (ARPES) experiments, and we refer to [75] for a discussion about this statement. Finally,
the measure A takes a very simpler form in the finite-dimensional setting: as detailed in the next chapter,
the Green’s function can be theoretically calculated using the Källen-Lehmann representation: it reads,
for all z ∈ C+, for all φ, φ′ ∈ H,

〈φ,G(z)φ′〉 =
∑

ψ,ψ′∈B

ρψ + ρψ′

z + (Eψ − Eψ′)
〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉, (1.30)

where B is a joint eigenbasis of ρ̂, Ĥ with corresponding eigenvalues ρψ, Eψ. The spectral function
therefore gives the one-particle excitation energies of the system.

This formula could let the reader think that for finite dimensional systems, meaning any computation,
Green’s function are easily computable as a sum of explicit terms. But this sum implies the prior
diagonalization of a self-adjoint operator in the Fock space, whose dimension grows exponentially with
the dimension of the one-particle Hilbert space, which is precisely the bottleneck of computations of
quantum systems. The idea of embedding methods is precisely to bypass this step, in a manner that we
detail in the next section.
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1.3 Embedding methods

In this last section, we introduce the embedding methods we were interested in during the PhD. Since the
mathematical analysis of these approximations is new, we had to give a detailed mathematically oriented
presentation of these methods, in [17] (Chapter 2) for DMET and [18] (Chapter 3) for DMFT, so that we
will not discuss all the details but rather give a general overview. We present them in the order in which
they appeared chronologically: first DMFT, from the perspective of the sparsity pattern of the self-energy
rather than that of path integrals and the “cavity method” [41], then DMET which was developed as a
“simple alternative” to DMFT. In this order, we highlight the main similarities and differences between
these two methods, comparing DMET with respect to DMFT, the symmetric comparison being given in
Section 3.1. The interested reader will find very helpful resources in [71], Part VI and VII for DMFT
(see in particular the original Euclidean field presentation of DMFT) and Part V for a discussion about a
similar embedding of 1-RDM. Finally, we present some guidelines for future work on DMFT, which this
thesis calls for.

1.3.1 Dynamical Mean-Field Theory

In its original formulation [40, 41], the principle of DMFT is to approximate the Green’s function of a
Hubbard model using an Anderson Impurity Model (AIM), whose parameters are determined by a self-
consistent condition. An AIM describes an impurity embedded in a medium, and for this reason, DMFT
was also called “Local Impurity Self-consistent Approximation” (LISA) in its early days [41]. Before
discussing its principle in more detail, let us say that the design of this approximation was motivated by
previous studies of the “d =∞” Hubbard model [80], this model simplifying in this limit in a similar way
as that of classical spin systems, for example the Ising model on the d-dimensional hypercubic lattice, as
d goes to infinity. From this point of view, DMFT is a “mean-field” method in the sense of a classical-
quantum analogy with mean-field methods applied to classical spin systems such as the Ising model, and
it is “dynamical” due to the fact that Green’s functions are time-dependent functions [39].

Anderson Impurity Model The AIM [4] is a quantum model for magnetic impurities embedded in
a set of conducting electrons living in a system that is called the “bath”. Originally formulated for a
single-site impurity, it has been then extended to multiple sites to model impurity clusters and for the
purpose of cluster DMFT. Its formulation is better expressed using the formalism of second quantization
and is fully given in Section 3.2: briefly, it describes two subsystems, on the one hand the “impurity”,
described by a Hubbard model and onto which electrons interact, and on the other hand a “bath” of non-
interacting electrons, these two subsystems being coupled by the tunnel effect, meaning that electrons
can jump from one to the other, in a similar way as in a tight-binding model. A crucial property of this
model lies in the locality of the interactions between the electrons (they interact only on the impurity),
which translates mathematically into the fact that the Hamiltonian reads

ĤAI = dΓ(H0) + ĤI , with ĤI ∈ A{â†φâφ′ , φ, φ′ ∈ Himp}, (1.31)

where the latter is the impurity Gauge Invariant Canonical Anti-commutation Relations (GICAR) sub-
algebra (see [97] for a self-contained presentation of these algebras). The consequence of this property is
that the self-energy Σ, well defined for any equilibrium state of a finite dimensional quantum system as

Σ =
(
G0
)−1 −G−1 (1.32)

is non-zero only on the impurity, meaning that in the orthogonal decomposition H = Himp ⊕ Hbath of
the one-particle space, it reads

Σ =

(
Σimp 0

0 0

)
. (1.33)

This property of the self-energy is known as its sparsity pattern [69] and Theorem 3.2.8, and lays the
groundwork for DMFT. The main idea of this method, illustrated in Figure 1.6, is to use a partition
P of the original set of Hubbard vertices Λ, and to “embed” each of the elements of this partition in
a “bath”, thus defining a collection of Anderson Impurity Models. The “impurity” is defined by the
subgraph induced by the DMFT partition P, while the baths, represented by their hybridization function
∆p are chosen so as to satisfy the following self-consistent equations for all p ∈ P,

Gimp,p = GDMFT,p (1.34)
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Figure 1.6: Principle of the DMFT approximation: after partitionning with P, define a collection of
self-consistent AIMs

where GDMFT is defined as

GDMFT =
(
z −H0

H − ΣDMFT

)−1
(1.35)

where H0
H is the one-particle Hamiltonian associated to the non-interacting part of the original Hubbard

model, and ΣDMFT is given by

ΣDMFT =
⊕
p∈P

Σimp,p (1.36)

To close the loop, the last ingredient to be provided is an impurity solver which, for fixed impurity
parameters, gives the self-energy Σimp of an AIM given a hybridization function ∆: in our work, we were
interested in the Iterated Perturbation Theory (IPT) version of this solver, which we present at length
in Section 3.2.5 after introducing the formalism of Matsubara’s Green’s functions. Note that Equation
(1.36) imposes self-consistency, and is the justification of the terminology of DMFT, each subgraph being
treated as if its neighborhood hosted non-interacting electrons. Overall, we end up with the following
equations

∀z ∈ C+, ∆(z) = W
(
z −H0

⊥ − Σ(z)
)−1

W † (1.37)

Σ = IPTβ(U,∆). (1.38)

Contributions of this thesis To our knowledge, the only mathematical contributions to the analysis
of DMFT are found in [71, Part VII], where the authors show that the “DMFT loop” (corresponding to
our Bath Update map) defined by (1.37) is a well-defined map between self-energies and hybridization
functions of finite dimensional systems. In this thesis, we give in Chapter 3 a mathematical analysis of
these equations, which discusses the existence of solutions to these equations as we describe below:

� After a lengthy introduction in which we detail the definition of the appropriate objects and the
derivation of DMFT, we provide in Proposition 3.2.18 the counterpart of what is proven in [71], by
showing that the IPT solver involved in Equation (1.38) is well defined for hybridization functions
associated with finite dimensional baths, and returns a self-energy associated with a finite dimen-
sional system structure. The proof of this statement relies on analytic continuation problems, which
we introduce in Appendix 3.A.1, and for which we give a uniqueness result which, to the extent of
our knowledge, is new.

� With the two equations being well-defined between hybridization functions and self-energies of finite-
dimensional systems, we are in a position to study the existence of solutions to the IPT-DMFT
equations: we prove in Proposition 3.3.5 that, apart from trivial limits for which DMFT admits a
unique (and exact) solution as we present in Proposition 3.2.12, there is no solution associated with
finite-dimensional baths. This result is well known in physics, and relies on the fact that, without
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bath truncation, the dimension of the AIM’s baths increases with each iteration of the DMFT map.
Note that this result depends on the impurity solver implied in the DMFT loop: it is also expected
to hold for the theoretical (and exact) impurity solver, but not for less accurate solvers such as
(static) Hartree-Fock theory which returns constant (in frequency) self-energies.

� The latter fact suggests to look for solutions in the closure of the set of hybridization functions and
self-energies associated to finite dimensional systems: our approach is based on an extension using
(negatives of) Pick functions, which are analytic maps from the upper half-plane C+ with positive
imaginary part. Using the Nevanlinna-Riesz measure associated with the latter, we reformulate the
equations in terms of matrix-valued positive measures, and in this setting we show that both the
Bath Update map (Proposition 3.3.6) and the IPT map (Proposition 3.3.8) are well defined for the
appropriate spaces of measures, which encompass the finite-dimensional baths setting.

� This framework proves useful in Theorem 3.3.9, our main result, in which we show that the IPT-
DMFT equations admit a solution. Our proof is based on a reformulation of the equations into
a fixed-point problem, for which we use a Schauder(-Singbal) fixed-point theorem with the weak
topology on the space of finite measures. As a by-product of the proof, we show that a solution of
the DMFT equations admits moments up to any order in Proposition 3.3.10. This property implies
that the Green’s function associated with a solution admits a spectral measure A with moments up
to any order: from a physical point of view, this means that no global quasiparticle is predicted by
DMFT, the presence of which being associated with a Lorentzian spectral function [75] that does
not have moments of order higher than zero.

Since DMFT is a practical computational scheme, in Chapter 4 we also discuss the standard discreti-
sation scheme used with the IPT solver, which is based on the restrictions of the hybridization function
and the self-energy to the discrete set of Matsubara’s frequencies. The mathematical and numerical
contributions of this analysis are presented below:

� After presenting how this algorithm can be used to gain insight into the Mott transition, we start
by proving the existence of the solution of the discretized equations in Theorem 4.2.1: contrary to
what is done in [18], our proof is not based on Pick functions, and the result we obtain is weaker,
requiring assumptions on the parameters defining the model. Moreover, there is no guarantee that
the obtained solution is compatible with a “physical” solution, and our theorem only ensures the
solution satisfies a necessary condition for this to hold.

� We then provide a numerical exploration of the classical fixed-point algorithm associated with the
discretized equations for the Hubbard dimer in Section 4.3. We start by showing evidence for a Mott
transition at high-enough temperature using Pade approximants for analytic continuation, and show
in this setting that linear convergence up to machine precision is observed for high temperature
(β = 1), independently of the value of the on-site repulsion U and for two very distinct initial
guesses. However, for low temperature (β = 10) and intermediate values of the on-site repulsion
U we see a very different trend, where the convergence is not monotonous and sometimes leads
to unphysical solutions (see Figure 6). Results for small and large on-site repulsion indicate that
uniqueness should hold in this regime.

� These results suggest implementing a continuation method to explore the intermediate U region,
starting from low/large values of U. Our simulations indicate that coexisting solutions for interme-
diate values of U are not observed, and merely correspond to “metastable” solutions that require
many more iterations to reach convergence.

� We conclude this chapter by proving what is observed for small and large on-site repulsion in
Theorem 4.4.1, namely that solution is unique in these regimes. Our proof is based on a simple
estimate of the discretized DMFT map and on the Picard fixed-point theorem, and provides only
with a uniqueness result in a neighborhood of the origin.

1.3.2 “A Simple Alternative to DMFT”: Density Matrix Embedding Theory.

As claimed in the seminal papers [60, 61], Density Matrix Embedding Theory (DMET) is inspired by
the principles of DMFT, and aims to provide a “simple alternative” to the latter, both in the setting of
quantum lattices [60] and molecular Hamiltonians [61]. These methods are both based on an approxi-
mation of a large interacting system by a collection of smaller, self-coherent subsystems, obtained after
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the decomposition of the one-particle space. If a direct comparison of ”simplicity” with DMFT is not a
mathematical question, we can outline how the setting of DMET is simpler than that of DMFT before
giving the details of its derivation: on the one hand, it focuses on the one-particle reduced density matrix
(which we will abbreviate as 1-RDM and note D in this section, to be consistent with Chapter 2 and
more generally with the chemistry literature, and not 1-pdm as we did in the previous Section) of a
finite dimensional system, and on the other hand, the dimension of the bath is finite and fixed by the
decomposition of the one-particle space.

As its name suggests, DMET provides an approximation to 1-RDM D of a quantum system in one
of its ground states Ψ, with a given number of electrons N (generalizations to Gibbs states are emerging
[103] but we do not discuss them here). For interacting electrons, such a vector is not expected to be a
Slater determinant so the exact 1-RDM is not a projector (see the previous Section for a discussion about
this property). Nevertheless, DMET approximates the exact 1-RDM with a projector, and is similar to
the Hartree-Fock method in this respect. In other words, the approximate 1-RDM lies in the following
set:

D = {D ∈ S(H), D2 = D,Tr(D) = N}, (1.39)

while a general 1-RDM of a N particle vector state lies in the convex hull of the former set:

CH(D) = {D ∈ S(H), 0 ≤ D ≤ 1,Tr(D) = N}. (1.40)

Like DMFT, DMET is based on a “fragmentation” of the one-particle space: in DMFT, it is given
by the partition P of the Hubbard vertices, while in DMET it is given by an orthogonal decomposition
of H into so-called “fragments” Xx which are finite dimensional (dim(Xx) = Lx): we assume that

H =

Nf⊕
x=1

Xx (1.41)

where Nf is the number of fragments. Note that such a decomposition can also be derived in DMFT,
from a DMFT partition P and using the basis given in (1.1), showing the importance of localized orbitals
in the development of this method. In our analysis [17], we have dealt with a finite number of fragments,
making H finite dimensional, which corresponds to the setting in which numerical simulations are carried
out. Now for a given projector 1-RDM D ∈ D, we define for each fragment Xx the associated “impurity
space” Wx,D ⊂ H as

Wx,D = Xx +D(Xx) = D(Xx)⊕ (1−D)(Xx) (1.42)

where the last sum is orthogonal. This space is of finite dimension dim(Wx,D) ≤ 2Lx and our assumption
(A2) for the main theorems is that this equality holds for a specific non-interacting 1-RDM D0, which
we will specify later (impurity spaces are of maximal dimension): in the following we consider it holds
for any D, which is true in the neighborhood of such a D0. Since DMET is interested in the ground
state of a given Hamiltonian Ĥ ∈ S(F), it aims at giving an approximation to the following minimization
problem

inf
Ψ∈HN ,‖Ψ‖=1

〈Ψ, ĤΨ〉 (1.43)

which we already discussed in the previous section. The search space for such a problem is of very high
dimension, and the principle of DMET is to reduce it by “freezing” the degrees of freedom that are
outside the impurity space. This is done as follows for each impurity space Wx,D:

� Start by defining the associated “core space”Hcore
x,D by decomposing in orthogonal subspaces Ran(D) =

D(Xx)⊕Hcore
x,D . As we mentioned previously when introducing 1-RDM, a 1-RDM is a projector if

and only if it is associated with a Slater determinant ΨD = â†φ1
. . . â†φN |∅〉 of a set of {φi}i∈[[1,N ]]

spin-orbitals (see Equation (1.3)): in the following, the latter are chosen to be consistent with the
previous decomposition, meaning D(Xx) = Span(φi)i∈[[1,Lx]] and Hcore

x,D = Span(φi)i∈[[Lx+1,N ]].

� Then similarly define the associated “virtual space”Hvirt
x,D by decomposing into orthogonal subspaces

Ran(1−D) = (1−D)(Xx)⊕Hvirt
x,D (note that the “virtual space” of DMET is not the virtual spin-

orbitals space introduced in the previous section, which corresponds to Ran(1 − D)), so that we
end up with the following decomposition of the one-particle space H

H = D(Xx)⊕ (1−D)(Xx)︸ ︷︷ ︸
Wx,D

⊕Hcore
x,D ⊕Hvirt

x,D︸ ︷︷ ︸
Henv
x,D

. (1.44)
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� Now recall that the vector states ΩΨD are normal states (in finite dimension, every state is a
normal state), with the density matrix ρ̂D ∈ S(F) being the orthogonal projector on ΨD: using
the following isomorphism for the Fock space F(H) associated to H (see for instance [102, Problem
6.3], the Fock space operation being somehow an exponential for ⊕ and ⊗):

F(H) ' F(Wx,D)⊗F(Henv
x,D), (1.45)

the density operator reads up to this isomorphism

ρ̂D = ρ̂Wx,D
⊗ ρ̂Henv

x,D
(1.46)

where ρ̂Wx,D
∈ S(F(Wx,D)) (resp. ρ̂Henv

x,D
∈ S(F(Henv

x,D))) is the orthogonal projection on the Slater

Determinant state ΨWx,D
(resp. ΨHenv

x,D
) associated with {φi}i∈[[1,Lx]] ⊂ D(Xx) ⊂ Wx,D (resp.

{φi}i∈[[Lx+1,N ]] ⊂ Hcore
x,D ⊂ Henv

x,D).

� Writing ρ̂ = (ρ̂Wx,D
⊗ 1)(1⊗ ρ̂Henv

x,D
), we end up with

〈Ψ, ĤΨ〉 = Tr((ρ̂Wx,D
⊗ 1)

(
(1⊗ ρ̂Henv

x,D
)Ĥ
)

) = Tr(ρ̂Wx,D
Ĥ imp
x,D) = 〈ΨWx,D

, Ĥ imp
x,DΨWx,D

〉 (1.47)

where Ĥ imp
x,D = TrF(Henv

x,D)((1⊗ ρ̂Henv
x,D

)Ĥ) is given by a partial trace on the environment Fock space

F(Henv (see [92] for a discussion of the meaning of partial trace in quantum information) and is
called the “impurity Hamiltonian”. Its expression for Ĥ = dΓ(H0) + ĤI , where ĤI is a two-body
operator, is given in detail in [17, Proposition 7] and in part in [71, Part V, Section 5].

� With this formula, freezing the environment degrees of freedom means fixing Ĥenv
x,D, and optimizing

on ΨWx,D
when looking at the ground state. Finally, for reasons that will become clearer when

looking at the big picture, DMET considers the ”grand canonical” impurity Hamiltonian Ĥ imp
x,D −

µN̂x, where N̂x is the fragment (and not impurity !) number operator N̂x = dΓ(Πx), Πx being the
orthogonal projector on Xx, and µ is the chemical potential to be specified below. With all these
considerations, we arrive at the impurity problem which reads as a grand canonical ground state
minimization over F(Wx,D):

inf
Ψimp
x ∈F(Wx,D), ‖Ψx‖=1

〈Ψimp
x ,

(
Ĥ imp
x,D − µN̂x

)
Ψimp
x 〉 (1.48)

Assuming that the above minimization problems have a unique solution for all x ∈ [[1, Nf ]], we denote
by Pµ,x(D) the 1-RDM of the solution to the x-th impurity problem. The high-level DMET map FHL is
then defined as

FHL(D) =

Nf∑
x=1

ΠxPµ,x(D)Πx (1.49)

where µ is chosen such as Tr(FHL(D)) = N . This is the first part of the DMET iteration, and is called
“high-level” because it requires high-level computations to solve the impurity problems (compared to
cheap computations such as Hartree-Fock). In comparison with DMFT, this step corresponds to the
impurity solver, but unlike our analysis of DMFT where we were interested in the IPT approximate
solver, here we assume that the impurity problems can be solved exactly. Note that FHL(D) is in

P = Bd(CH(D)), with Bd(Ô) =

Nf∑
x=1

ΠxÔΠx. (1.50)

Now the second step, called the low-level step, is much shorter to express: it consists, for a given
P ∈ P, in finding the closest projector 1-RDM D ∈ D that matches with the block diagonal entries,
meaning satisfies Bd(D) = P . In our article, we studied the following low-level map:

FLL(P ) = argmin
D∈D,Bd(D)=P

EHF(D) (1.51)

where EHF(D) is nothing but the (Hartree-Fock) energy 〈ΨD, ĤΨD〉 where ΨD is the Slater determinant
associated with D. Compared to DMFT, this step is the equivalent of the Bath update map, but
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poses much more problems from a mathematical point of view: to be well defined, the above functional
must admit a unique minimizer, over a set which raises representability issues [31]. Overall, the DMET
equations consist of the following set of self-consistent equations:

D = FLL(P ) ∈ D (1.52)

P = FHL(D) ∈ P. (1.53)

Contributions of this thesis To our knowledge, the very existence of a solution to the DMET equa-
tions was not proven mathematically. In Chapter 2, we partly answer this question by considering the
weakly interacting regime: given a Hamiltonian Ĥ = dΓ(H0) + ĤI where ĤI is a two-body operator, we
consider the family of Hamiltonians Ĥα where for all α ∈ R,

Ĥα = dΓ(H0) + αĤI . (1.54)

The case α = 0 corresponds to the non-interacting setting, while the case α = 1 corresponds to the original
one. Our study provides insights into the weakly interacting setting, meaning for α in a neighborhood
of 0. The first assumption (A1) is based on the one-particle Hamiltonian H0 and concerns the low-level
solver: its eigenvalues (counted by multiplicity) satisfy εN < 0 < εN+1, so that it admits a unique
N -particle ground state Ψ being a Slater determinant, with associated 1-RDM (defined by functional
calculus) being

D0 = χR−(H0). (1.55)

The second assumption (A2) concerns the high-level solver in the non-interacting case: we assume that the
impurities Wx,D0 are of maximal dimension. Under these two assumptions, we first show in Proposition
2.1 that for the non-interacting setting α = 0, the 1-RDM D0, together with its block diagonal counterpart
P 0 = Bd(D0) form a solution to the DMET equations. This is partly a justification for the claim that
DMET “is exact in the non-interacting [...] limit” [60], and is the equivalent of Proposition 3.2.12
for DMFT. Note however that nothing ensures that this solution is the unique solution to the DMET
equations, even in the non-interacting setting.

We then study the weakly interacting limit, where we need two additional assumptions: Assumption
(A3) deals with representability issues near D0, and expresses that the block-diagonal mapping Bd is
surjective from the tangent plane TD0D of (D) at D0 to the tangent plane TP 0(P). This assumption
ensures the existence of projectors 1-RDM that coincide on the block diagonal entries for P in a neigh-
borhood of P 0, and is motivated by the fact that in general, the sets Bd(D) and P do not coincide, as
we prove in Lemma 2.8. The last assumption (A4) is a bit more technical and concerns the invertibility
of the response function associated with the high-level solver, and we refer the reader to Section 2.3 for a
more detailed discussion of this. Under Assumptions (A1)-(A4), we are able to prove the following main
theorems.

� We first prove in Theorem 2.4 that in the vicinity of α = 0, there exists a unique solution (Dα, Pα)
which lies in the neighborhood of (D0, P 0). We call this set of solutions the “physical branch”:
both are real analytic in α and reduce to (D0, P 0) when α = 0. The proof is based on the implicit
function theorem.

� Subsequently, we prove in Theorem 2.5 that this branch provides an approximation to the exact
1-RDM to first order in α in the weakly interacting regime.

We conclude the paper with numerical insights: we show numerically that exactness to higher order is
not generally observed for the physical branch, and that our assumptions, if violated, can lead to multiple
solutions.

1.3.3 Overview table and perspectives.

For the reader’s convenience, we sum up our presentation of the two embedding methods this thesis
focuses on in the following table:

To conclude this introduction, we give below some guidelines for future work related to the mathe-
matical description of DMFT. The first project, in the continuation of Chapters 3 and 4, could provide
insights into the uniqueness of the solution of the (non-discretized) IPT-DMFT equations and an alter-
native discretization scheme to that of Chapter 4, based on optimal transport algorithms and free from
analytic continuation techniques. The two others are more prospective and explore two facets of Green’s
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DMFT DMET

General framework

Equilibrium state Gibbs state, ρ̂ = e−β(Ĥ−µN̂)/Z Ground state, ρ̂ projector onto Ψ
Reduced quantity Green’s function G (Pick function) 1-RDM D (self-adjoint)
Model of interest Hubbard model (GH = (Λ, E), T, U) Any finite dimensional

Decomposition of H DMFT partition P of Λ Any orthogonal decomposition ⊕xXx

Mean-field model Collection of AIMs Collection of (Wx,D, Ĥ
imp
x,D)

Bath dimension Infinite (non-interacting) Finite, dim(Wx,D) = 2 dim(Xx)
Impurity step Impurity solver ∆ 7→ Σ (IPT here) High-level solver FHL : D 7→ P

Self-consistency Bath Update map Σ 7→ ∆ Low-level solver FLL : P 7→ D

Mathematical results on self-consistent equations in this thesis

Existence Global [18], conditional Chapter 4 Near α = 0, under (A1)-(A4)
Uniqueness Trivial limits [18], locally Chapter 4 Near α = 0, locally
Exactness Trivial limits [18] First order in α, near α = 0

Table 1.1: Overview table of the main features of DMFT and DMET from the perspective of this thesis.

functions theory: on the one hand, the very definition of the impurity solver of an Anderson Impurity
Model, and on the other hand, the thermodynamic limit of the Green’s functions for a “d =∞” Hubbard
model.

Certainly, much remains to be done concerning the mathematical status of DMET: let us mention, for
example, the study of the strictly correlated limit which has been initiated by some authors of [17], which
would provide insights into the complementary limit than that of Chapter 2. However, the author of this
manuscript is more interested in the problem of the mathematical description of DMFT, both from the
point of view of the mathematical tools involved and of the progress it would bring to the understanding
of Green’s functions methods.

Uniqueness, new numerical scheme In Chapter 3, we prove the existence of solutions to the IPT-
DMFT equations, and in Chapter 4 we prove for the discretized equations that a solution also exists,
and is unique in some parameter regimes: the next point to be clarified is indeed the question of the
uniqueness of the solution of the original IPT-DMFT equations. To answer this question, the arguments
invoked for the discretized equations do not easily transfer to the original ones: as mentioned in the
introduction of Chapter 4, the big difference is in the functional setting, where in Chapter 3 we require
solutions to be “‘physical”, i.e. to be the Stieltjes transform of a positive measure. In order to conclude
on uniqueness, estimates for measure distances must be found and at this stage, we have not yet given
a satisfactory bound on the IPT map. A different approach might be to look at the moment problem
associated with a solution [1], with a first insight from the formal β → ∞ limit, for which we have
derived a recursive formula on the moments. An answer to this question of uniqueness would help to
understand Mott transition as predicted by DMFT, whose order as a phase transition is directly related
to the coexistence of solutions.

Another idea to investigate is the design of a new numerical scheme for the IPT-DMFT equations,
that bypasses the analytic continuation. It is based on Proposition 3.2.18, which states that the analytic
continuation problem posed by IPT for a discrete measure admits a unique solution in the set of (nega-
tives) of Pick functions, which turns out to have a discrete Nevanlinna-Riesz measure. The support of the
latter can be deduced from the set of roots of a given rational function, which can be searched in parallel
and using classical root-finding algorithms, while the weights are given analytically. Moreover, it is easy
to show that a similar property holds for the bath-update map. These statements suggest an “exact
diagonalization” approach [15, 70, 78] to IPT as a fixed point algorithm on discrete measures. Indeed
the bath dimension increases exponentially with the number of iterations, and this algorithm needs to
be complemented with a bath truncation procedure [79] to avoid an explosion of the computation time
along the iterations: in light of the proofs exposed in Chapter 3, we believe that this procedure may be
advantageously done using discrete Kantorovich optimal transport algorithms.

Well-posedness of the exact impurity solver In this thesis, we have focused on the IPT approx-
imation of the impurity solver in our study of DMFT. In fact, precise computations are based on more
accurate solvers, and in order to provide mathematical insights about DMFT in this setting, the first step
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is to study the exact impurity solver. For given impurity parameters GH , T, U, the latter is the map that
gives the self-energy Σ of an Anderson Impurity Model for a given hybridization function ∆. As shown
in [69] and Theorem 3.2.8, this self-energy is sparse, and we would begin by showing its well-posedness.
Further work would include a study of its regularity in terms of measure distances, as we did for IPT,
and would lead to results on the existence of solutions to the “exact” DMFT equations. We believe
that the setting of AIM is a good candidate for discussing the definition of Green’s functions for gen-
eral equilibrium states, and this project could in the longer term contribute to the understanding of the
Luttinger-Ward formalism [62, 67, 68], while paving the way for the study of Continuous Time Quantum
Monte Carlo algorithms [46].

Thermodynamic limits of DMFT (”d=∞” exactness) Once the question of the uniqueness of the
solution to the (IPT) DMFT equations is resolved, an interesting question is the existence and properties
of thermodynamic limits of the solution, DMFT being designed to understand periodic materials. A
particularly interesting topic would be to discuss the exactness of the solution of the DMFT equations in
the “d = ∞” limit [80], meaning for the nearest neighbor graph of the d-dimensional hypercubic lattice
in the limit d → ∞, and to discuss the scaling of the hopping matrix T and the on-site interaction U
which lead to non-trivial limits.
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Chapter 2

Some mathematical insights on
DMET

In this chapter, we provide a mathematical and numerical analysis of Density Matrix Embedding The-
ory (DMET) in the non-interacting limit. This part is joint work with Éric Cancès, Fabian Faulstich,
Élöıse Letournel and Antoine Levitt, and as been submitted to Communications on Pure and Applied
Mathematics (CPAM).

Abstract This article provides the first mathematical analysis of the Density Matrix Embedding
Theory (DMET) method. We prove that, under certain assumptions, (i) the exact ground-state density
matrix is a fixed-point of the DMET map for non-interacting systems, (ii) there exists a unique physical
solution in the weakly-interacting regime, and (iii) DMET is exact at first order in the coupling
parameter. We provide numerical simulations to support our results and comment on the physical
meaning of the assumptions under which they hold true. We show that the violation of these
assumptions may yield multiple solutions of the DMET equations. We moreover introduce and discuss
a specific N -representability problem inherent to DMET.
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2.1 Introduction

Electronic structure theory is a powerful quantum mechanical framework for investigating the intricate
behavior of electrons within molecules and crystals. At the core lies the interaction between parti-
cles, specifically the electron-electron and electron-nuclei interactions. Embracing the essential quantum
physical effects, this theory is the foundation for ab initio quantum chemistry and materials science
calculations performed by many researchers in chemistry and related fields, complementing and supple-
menting painstaking laboratory work. With its diverse applications in chemistry and materials science,
electronic structure theory holds vast implications for the mathematical sciences. Integrating mathemat-
ical doctrines into this field leads to the development of precise and scalable numerical methods, enabling
extensive in silico studies of chemistry for e.g. sustainable energy, green catalysis, and nanomaterials.
The synergy between mathematics and electronic structure theory offers the potential for groundbreaking
advancements in addressing these global challenges.

Within the realm of electronic structure theory, the treatment of strongly correlated quantum systems is
a particularly challenging and long-standing challenge. Here, the application of high-accuracy quantum
chemical methods that are able to capture the electronic correlation effects at chemical accuracy is
inevitable. Unfortunately, the application of such high-accuracy methods is commonly stymied by a
steep computational scaling with respect to the system’s size. A potential remedy is provided by quantum
embedding theories, i.e., a paradigm for bootstrapping the success of highly accurate solvers at small scales
up to significantly larger scales by decomposing the original system into smaller fragments, where each
fragment is then solved individually and from which, a solution to the whole system is then obtained [17,
20, 44]. Such approaches include dynamical mean-field theory [32, 15, 16, 26, 30], or variational embedding
theory [27, 7, 22].

Subject of this article is a widely-used quantum embedding theory, namely, density matrix embedding
theory (DMET) [23, 24, 51, 3, 56, 10, 48, 9]. The general idea of DMET is to partition the global
quantum system into several quantum “impurities”, each impurity being treated accurately via a high-
level theory (such as full configuration interaction (FCI) [25, 39, 52], coupled cluster theory [8], density
matrix renormalization group (DMRG) [55], etc.). More precisely, the DMET methodology follows the
procedure sketched out as: 1) fragment the system, 2) for each fragment, construct an interacting bath
that describes the coupling between the fragment and the remaining system, thus giving rise to a so-
called impurity problem, 3) solve an interacting problem for each impurity using a highly accurate method,
4) extract properties of the system, 5) perform step 2)–4) self-consistently in order to embed updated
correlation effects back into the full system. Over the past years, a large variety of this general framework
has been developed, including how the bath space is defined (including the choice of low-level theory) [13,
35, 36, 59], how the interacting cluster Hamiltonian is constructed and solved [38, 41, 29, 14, 43], and
the choice of self-consistent requirements [57, 58, 12]. This variety of DMET flavors has been successfully
applied to a wide range of systems such as Hubbard models [23, 3, 6, 65, 67, 66, 54, 46, 45], quantum
spin models [11, 18, 42], and a number of strongly correlated molecular and periodic systems [24, 56, 9,
37, 2, 40, 19, 49, 64, 60, 63, 61, 62, 50, 31, 33, 34, 1]. Recently, the application of DMET variants on
quantum computers has been explored [28, 53, 5].

In this article, we follow the computational procedure where the global information, at the level of
the one-electron reduced density matrix (1-RDM), is made consistent between all the impurities with the
help of a low-level Hartree-Fock (HF) type of theory. In the self-consistent-field DMET (SCF-DMET)1,
this global information is then used to update the impurity problems in the next self-consistent iteration,
until a consistency condition of the 1-RDM is satisfied between the high-level and low-level theories.

This article is organized as follows. In Section 2.2.1, we introduce the many-body quantum model
under investigation and its fragment decomposition, and set up some notation used in the sequel. In
Section 2.2.2, we present a mathematical formulation of the DMET impurity problem and introduce
(formally) the high-level DMET map. The low-level DMET map and the DMET fixed point problem are
defined (still formally) in Sections 2.2.3 and 2.2.4 respectively. In Section 2.3, we state our main results:

1. in Proposition 2.1, we show that for non-interacting systems, the exact ground-state density matrix
is a fixed-point of the DMET map if (i) the system is gapped (Assumption (A1)), and (ii) the
fragment decomposition satisfies a natural and rather mild condition (Assumption (A2)). Although
this result is well-known in the physics and chemistry community, a complete mathematical proof
was still missing;

1Throughout the paper, DMET refers to SCF-DMET. This is in contrast to one-shot DMET, in which the impurity
problem is only solved once without self-consistent updates.
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2. in Theorem 2.4, we prove that under two additional assumptions ((A3) and (A4)), the DMET
fixed-point problem has a unique physical solution in the weakly-interacting regime, which is real-
analytic in the coupling parameter α. Assumption (A3) is related to some specificN -representability
condition inherent to the DMET approach, while Assumption (A4) has a physical interpretation in
terms of linear response theory;

3. in Theorem 2.5, we prove that in the weakly-interacting regime, DMET is exact at first order in α.

The numerical simulations reported in Section 2.4 illustrate the above results and indicate that DMET
does not seem to be exact at second order. Although, in the special case when there is only one site per
fragment, Assumption (A4) is a consequence of Assumptions (A1)-(A3) (see Remark 2.3), the numerical
simulations presented show that this is in general not the case. Further investigations using the H6-
model (vide infra) reveal the existence of a specific configuration (Θ3) for which only Assumption (A4)
is not satisfied. In the vicinity of this configuration, DMET has at least two distinct solutions that arise
from a transcritical bifurcation at Θ3. In Section 2.5, we formulate the impurity problem in more detail
and discuss the domain of the high-level DMET map. In Section 2.6, we study the N -representability
problem mentioned above and provide a simple criterion of local N -representability directly connected to
Assumption (A3). In order to improve the readability of the paper, we postponed the technical proofs to
Section 2.7. For the reader’s convenience, the main notations used throughout this article are collected
in Table 2.A.1 in Appendix 2.A.

2.2 The DMET formalism

2.2.1 The quantum many-body problem and its fragment decomposition

We consider a physical system with L quantum sites, with one orbital per site, occupied by 1 ≤ N <
L electrons, and assume that magnetic effects (interaction with an external magnetic field, spin-orbit
coupling, etc.) can be neglected. This allows us to work with real-valued wave-functions and density
matrices. We set

H := RL (one-particle state space), Bat := {eκ}κ∈[[1,L]] (canonical basis of RL), (2.1)

Hn :=

n∧
H (n-particle state space), Fock(H) :=

L⊕
n=0

Hn (real fermionic Fock space).

We denote by âκ and â†κ the generators of the (real) CAR algebra associated with the canonical basis of
H, i.e.

âκ := â(eκ) and â†κ = â†(eκ).

Recall that the maps

RL 3 f 7→ â†(f) ∈ L(Fock(H)) and RL 3 f 7→ â(f) ∈ L(Fock(H)),

are both linear in this setting since we work in a real Hilbert space framework. Here and below, L(E)
is the space of linear operators from the finite-dimensional vector space E to itself. We also define the
number operator N̂ by

N̂ :=

L∑
n=0

n 1̂Hn =

L∑
κ=1

â†κâκ (particle number operator).

For each linear subspace E of H, we denote the orthogonal projector on E by ΠE ∈ L(H). We assume
that the Hamiltonian of the system in the second-quantized formulation reads

Ĥ :=

L∑
κ,λ=1

hκλâ
†
κâλ +

1

2

L∑
κ,λ,ν,ξ=1

Vκλνξâ
†
κâ
†
λâξâν , (2.2)

where the matrix h ∈ RL×L and the 4th-order tensor V ∈ RL×L×L×L satisfy the following symmetry
properties:

hκλ = hλκ and Vκλνξ = Vνλκξ = Vκξνλ = Vνξκλ.
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We denote by D the Grassmannian of rank-N orthogonal projectors in RL:

D := GrR(N,L) = {D ∈ RL×Lsym | D2 = D, Tr(D) = N}, (2.3)

and by CH(D) the convex hull of D, i.e.

CH(D) = {D ∈ RL×Lsym | 0 ≤ D ≤ 1, Tr(D) = N}. (2.4)

Physically, the set CH(D) corresponds to the set of (real-valued, mixed-state) N -representable one-body
density matrices with N electrons, and D is the set of one-body density matrices generated by (real-
valued) Slater determinants in HN .

We consider a fixed partition of the L sites into Nf non-overlapping fragments {Ix}x∈[[1,Nf ]] of sizes
{Lx}x∈[[1,Nf ]] such that Lx < N for all x. Up to reordering the sites, we can assume that the partition is
the following:

[[1, L]] =

{
(1, · · · , L1)︸ ︷︷ ︸

I1

, (1 + L1, · · · , L1 + L2)︸ ︷︷ ︸
I2

, · · · , (1 + L1 + · · ·+ LNf−1, · · · , L)︸ ︷︷ ︸
INf

}
. (2.5)

This partition corresponds to a decomposition of the space into Nf fragment subspaces fulfilling

H = X1 ⊕ · · · ⊕XNf with Xx := Span(eκ, κ ∈ Ix). (2.6)

For M ∈ RL×Lsym , we set

Bd(M) :=

Nf∑
x=1

ΠxMΠx, (2.7)

where Πx := ΠXx is the orthogonal projector on Xx. The operator Bd ∈ L(RL×Lsym ) is the orthogonal
projector onto the set of block-diagonal matrices for the partition (2.5) (endowed with the Frobenius
inner product).

As we will see, a central intermediary in DMET is the diagonal blocks of the density matrix, P =

Bd(D) ∈ Bd(D). It is clear that these blocks must satisfy 0 ≤ Px ≤ 1 and
∑Nf
x=1 Tr(Px) = N . Conversely,

it is easy to see that grouping these blocks together into a block-diagonal matrix produces a matrix in
CH(D); therefore, we have

P := Bd(CH(D)) =

{
P =


P1 0 · · · 0
0 P2 · · · 0
...

. . .
...

0 0 · · · PNf


s.t. ∀1 ≤ x ≤ Nf , Px ∈ RLx×Lxsym , 0 ≤ Px ≤ 1,

Nf∑
x=1

Tr(Px) = N

}
. (2.8)

From a geometrical viewpoint, P is a non-empty, compact, convex subset of an affine vector subspace of
RL×Lsym with base vector space

Y :=

{
Y =


Y1 0 · · · 0
0 Y2 · · · 0
...

. . .
...

0 0 · · · YNf

 s.t. ∀1 ≤ x ≤ Nf , Yx ∈ RLx×Lxsym ,

Nf∑
x=1

Tr(Yx) = 0

}
. (2.9)

The structure of the set Bd(D) ⊂ P is a more subtle issue that we will investigate in Section 2.6.

2.2.2 The impurity high-level problem

Given one of the spaces Xx and a one-body density matrix D ∈ D, we set:

Wx,D := Xx +DXx = DXx ⊕ (1−D)Xx (x-th impurity subspace). (2.10)
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We will assume in the following that

dim(DXx) = dim((1−D)Xx) = dim(Xx) = Lx (maximal-rank assumption), (2.11)

so that dim(Wx,D) = 2Lx. Decomposing Ran(D) and Ker(D) as

Ran(D) = DXx ⊕Hcore
x,D and Ker(D) = (1−D)Xx ⊕Hvirt

x,D,

we obtain the following decomposition of H = RL:

H = Wx,D ⊕Hcore
x,D ⊕Hvirt

x,D︸ ︷︷ ︸
=:Henv

x,D

.

Note that the space Hcore
x,D has dimension (N − Lx). The matrix D can be seen as the one-body density

matrix associated with the Slater determinant

Ψ0
N,D = Ψ0,imp

x,D ∧Ψ0,core
x,D with Ψ0,imp

x,D ∈
Lx∧
DXx and Ψ0,core

x,D ∈
(N−Lx)∧

Hcore
x,D ,

where Ψ0,imp
x,D and Ψ0,core

x,D are normalized. More precisely, Ψ0
N,D is the Slater determinant built from an

orthonormal basis of Lx orbitals in DXx and an orthonormal basis of (N − Lx) orbitals in Hcore
x,D . The

so-defined wave-function Ψ0
N,D is unique up to an irrelevant sign.

We denote by N̂Xx ∈ L(Fock(H)) the projection of the number operator onto the fragment Fock space
Fock(Xx). Solving the impurity problem aims at minimizing, for a given µ ∈ R which will be specified
later, the thermodynamic potential

〈Ψ|(Ĥ − µN̂Xx)|Ψ〉 (2.12)

over the set of normalized trial states in Fock(H) of the form

Ψ = Ψimp
x,D ∧Ψ0,core

x,D (2.13)

with Ψ0,core
x,D fixed, and Ψimp

x,D in

Fock(Wx,D) :=

Lx⊕
n=0

n∧
Wx,D (x-th impurity Fock space).

The impurity Hamiltonian is the unique operator Ĥ imp
x,D on Fock(Wx,D) such that

∀Ψimp
x,D ∈ Fock(Wx,D), 〈Ψimp

x,D|Ĥ imp
x,D |Ψimp

x,D〉 = 〈Ψimp
x,D ∧Ψ0,core

x,D |Ĥ|Ψimp
x,D ∧Ψ0,core

x,D 〉. (2.14)

For an explicit expression of Ĥ imp
x,D , see Proposition 2.7.

The impurity problem defined by (2.12)-(2.13) can then be reformulated as

min
Ψimp
x,D∈Fock(Wx,D),‖Ψimp

x,D‖=1
〈Ψimp

x,D|Ĥ imp
x,D − µN̂Xx |Ψimp

x,D〉 (impurity problem). (2.15)

In practice, this full-CI problem in the Fock space Fock(Wx,D) is solved by an approximate correlated
wave-function method such as CASSCF, CCSD or DMRG for example, but we assume in this analysis
that it can be solved exactly.

If (2.15) has a non-degenerate ground state for all x, we denote the one-body ground-state density
matrices by Pµ,x(D), seen as matrices in RL×Lsym , and finally set

FHL
µ,x(D) := ΠXxPµ,x(D)ΠXx . (2.16)

Let us remark incidentally that if the ground state of the impurity problem is degenerate, we can either
consider FHL

µ,x(D) as a multivalued function or define them from finite-temperature versions of (2.15),
which are strictly convex compact problems on the set of density operators on the Fock space, and
therefore always have a unique minimizer. We will not proceed further in this direction and only consider
here the case of impurity problems with non-degenerate ground states.
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The combination of the Nf impurity problems introduced in (2.15) (see also (2.16)) gives rise to a
high-level DMET map FHL

D 3 D 7→ FHL(D) ∈ P (2.17)

formally defined by

FHL(D) :=

Nf∑
x=1

FHL
µ,x(D) (high-level map) (2.18)

with µ ∈ R chosen such that Tr(FHL(D)) = N . The domain of FHL and the regularity properties of this
map will be studied in Section 2.5.

2.2.3 The global low-level problem

The low-level map is defined by

FLL(P ) := argmin
D∈D, Bd(D)=P

EHF (D) (low-level map), (2.19)

where EHF is the Hartree-Fock (mean-field) energy functional of the trial density-matrix D. The latter
reads

EHF(D) := Tr(hD) +
1

2
Tr(J(D)D)− 1

2
Tr(K(D)D), (2.20)

where

[J(D)]κλ :=

L∑
ν,ξ=1

VλξκνDνξ and [K(D)]κλ :=

L∑
ν,ξ=1

VκξνλDνξ. (2.21)

The existence and uniqueness of a minimizer to (2.19) will be discussed in Section 2.6.

2.2.4 The DMET problem

Finally, the full DMET map is formally defined as the self-consistent solution to the system

D = FLL(P ) ∈ D,
P = FHL(D) ∈ P.

In particular, D = FLL(P ) implies that P = Bd(D). Equivalently, we can formulate the problem as

P = FDMET(P ) := FHL(FLL(P )).

Assuming that the solution to this fixed-point problem exists and is unique, P is expected to provide
a good approximation of the diagonal blocks (in the decomposition (2.6) of H) of the ground-state one-
body density matrix of the interacting system. The mathematical properties of this self-consistent loop
will be studied in the next section, first for the non-interacting case, and second, for the interacting case
in a perturbative regime.

2.3 Main results

We now embed the Hamiltonian H into the family of Hamiltonians

Ĥα :=

L∑
κ,λ=1

hκλâ
†
κâλ +

α

2

L∑
κ,λ,νξ=1

Vκλνξâ
†
κâ
†
λâξâν , α ∈ R, (2.22)

acting on Fock(H). For α = 0, we obtain the one-body Hamiltonian

Ĥ0 :=

L∑
κ,λ=1

hκλâ
†
κâλ (2.23)
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describing non-interacting particles, and we recover the original Hamiltonian Ĥ for α = 1. We denote by
FHL
α , FLL

α , and FDMET
α the high-level, low-level, and DMET maps constructed from Ĥα.

We first assume that the non-interacting problem is non-degenerate. Denoting by εn the n-th lowest
eigenvalue of h (counting multiplicities), this condition reads

(A1) εN < 0 < εN+1,

where without loss of generality we have chosen the Fermi level to be 0. Assumption (A1) indeed implies
that the ground-state of Ĥ0 in the N -particle sector of the Fock space is non-degenerate, and that the
ground-state one-body density is the rank-N orthogonal projector given by

D0 = 1(−∞,0](h). (2.24)

By perturbation theory, the ground state of Ĥα in the N -particle sector is non-degenerate for all α ∈
(−α+, α+) for some 0 < α+ ≤ +∞. We denote by Dexact

α the corresponding ground-state one-body
density matrix. As a consequence of analytic perturbation theory for hermitian matrices, the map
(−α+, α+) 3 α 7→ Dexact

α ∈ RL×Lsym is real-analytic.

Second, we make the maximal-rank assumption:

(A2) For all 1 ≤ x ≤ Nf , dim(D0Xx) = dim((1−D0)Xx) = dim(Xx) = Lx.

Assumption (A2) implies that the impurity problem (2.15) for Ĥ = Ĥ0 and D = D0 is well-defined for
each x and each µ. We emphasize however that this does not prejudge that the so-obtained Nf impurity
problems are well-posed (i.e. have a unique ground-state) for a given value of µ, nor a fortiori that D0 is
in the domain of the high-level map FHL

0 . We will elaborate more on the meaning of Assumptions (A2)
in Section 2.5.

DMET is then consistent in the non-interacting case:

Proposition 2.1 (P0 := Bd(D0) is a fixed point of the DMET map for α = 0). Under Assumptions
(A1)-(A2), P0 := Bd(D0) is a fixed point of the non-interacting DMET iterative scheme, i.e. P0 is in
the domain of FLL

0 , D0 is in the domain of FHL
0 , and FDMET

0 (P0) = P0.

Remark 2.2. We formally define the high-level Hartree-Fock map

FHL
MF : D → P,

as the high-level map constructed from the Hartree-Fock N -body Hamiltonian

ĤHF
D :=

L∑
κ,λ=1

[hHF(D)]κλâ
†
κâλ,

where
hHF(D) = h+ J(D)−K(D) (2.25)

is the one-particle mean-field (Fock) Hamiltonian. Using exactly the same arguments as in the proof of
Proposition 2.1, we obtain that the low-level map FLL satisfies the mean-field consistency property

FLL(FHL
HF (D∗)) = D∗,

for any Hartree-Fock ground state D∗. We will make use of this important observation in the proof of
Theorem 2.4.

We now study the DMET equations in the perturbative regime of α small. In order to use perturbative
techniques, we need to determine the space in which we seek P . Generically, at α 6= 0, we expect P
to be equal to the block diagonal of the one-body density matrix, which is not a projector. Therefore
it is natural to seek P in P = Bd(CH(D)). However, in the DMET method, D is constrained to be a
projector, and therefore P will necessarily belong to Bd(D). We will study in Section 2.6 the relationship
between the two sets P and Bd(D) (the N -representability problem), and in particular show that, in the
regime of interest to DMET (many relatively small fragments, so that L � maxx Lx), the two sets are
(generically) locally the same. Therefore, it is natural to assume the local N -representability condition:
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(A3) The linear map Bd is surjective from TD0
D to Y,

where Y is the vector subspace defined in (2.9). Indeed, P is a (non-empty, compact, convex) subset

of the affine space P0 + Y and Assumption (A2) implies that P0 ∈
◦
P, where

◦
P is the interior of P in

P0 +Y. Thus Y can be identified with the tangent space at P0 to the manifold
◦
P. By the local submersion

theorem, this implies that any P in the neighborhood of P0 can be expressed as the block diagonal of a
density matrix in the neighborhood of D0 in D.

Our last assumption is concerned with the response properties of the impurity problems at the non-
interacting level. Consider a self-adjoint perturbation Y ∈ RL×Lsym of the one-particle Hamiltonian h,
non-local but block-diagonal in the fragment decomposition, i.e. such that Y ∈ RIL + Y, and denote by

F̃HL
h+Y (D) the non-interacting high-level map obtained by replacing h with h+ Y (so that F̃HL

h(D) =
FHL

0 ). Formally, we have

F̃HL
h+Y (D0) = P0 +RY + o(‖Y ‖), (2.26)

with R : RIL +Y → Y linear (the fact that RY ∈ Y is due to particle-number conservation). The map R
can be interpreted as a non-interacting static 4-point density-density linear response function for frozen
impurity spaces. It follows from Assumption (A1) that constant perturbations do not modify the density
matrix: R(IL) = 0. Our fourth assumption reads:

(A4) the 4-point linear response function R : Y → Y is invertible.

This condition is somewhat reminiscent of the Hohenberg-Kohn theorem from Density Functional
Theory. Together with the local inversion theorem, it implies that, locally around h, in the non-interacting
case and for frozen impurity spacesWx,D0

, the high-level map defines a one-to-one correspondence between
non-local fragment potentials (up to a constant shift) and fragment density matrices.

Remark 2.3. We will show in Section 2.7.6 that in the case when Nf = L (one site per fragment), it
holds: under Assumptions (A1)-(A2),

(A3) is satisfied =⇒ D0 is an irreducible matrix ⇐⇒ (A4) is satisfied.

On the other hand, numerical simulations indicate that in the general case, Assumption (A4) is not a
consequence of Assumptions (A1)-(A3).

We are now in position to state our main results.

Theorem 2.4 (DMET is well-posed in the perturbative regime). Under assumptions (A1)-(A4), there
exist 0 < α̃+ ≤ α+, and a neighborhood Ω of D0 in D such that for all α ∈ (−α̃+, α̃+), the fixed-point
DMET problem

PDMET
α = FHL

α (DDMET
α ), DDMET

α = FLL
α (PDMET

α )

has a unique solution (DDMET
α , PDMET

α ) with DDMET
α ∈ Ω (otherwise stated, the DMET map for Hα

has a unique fixed point PDMET
α in the neighborhood of P0). In addition, the maps (−α̃+, α̃+) 3 α 7→

DDMET
α ∈ RL×Lsym and (−α̃+, α̃+) 3 α 7→ PDMET

α ∈ RL×Lsym are real-analytic and such that

DDMET
0 = D0 = 1(−∞,0](h), PDMET

0 = P0 = Bd(D0).

As is standard, the first-order perturbation of the exact density matrix is given by the Hartree-Fock
method. DMET is able to reproduce this, and is therefore exact at first order:

Theorem 2.5 (DMET is exact to first order). Under Assumptions (A1)-(A4) and with the notation of
Theorem 2.4, it holds

DDMET
α = Dexact

α +O(α2) = DHF
α +O(α2),

where DHF
α is the Hartree-Fock ground-state density matrix for Ĥα, which is unique for α small enough.

The numerical simulations reported in the next section show that such exactness property is not
expected to hold at second order.

In the weakly interacting regime, the solution DDMET
α to the DMET fixed-point problem is the only

physical one because it is the only one laying in the vicinity of D0, where the exact ground-state density
matrix is known to be by analytic perturbation theory.
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2.4 Numerical simulations

In this section, we perform numerical investigations of DMET for two distinct test systems: The first
system is H10 in a circular geometry which serves as a benchmark where DMET has been previously
recognized for its exceptional performance [24]. By studying this system, we aim to reaffirm the efficacy
of DMET and numerically showcase that DMET is exact to first order in the non-interacting limit.
However, to gain a comprehensive understanding of DMET’s limitations, we also explore a second system
which is an H6 variant. This particular system allows us to numerically scrutinize the assumptions made in
the analysis presented above. Through these numerical investigations, we aim to provide valuable insights
into the mathematical structure of DMET, paving the way for further advancements and improvements
in this promising computational approach. Throughout this section, we denote by ‖ · ‖F the Frobenius
norm on matrix spaces.

2.4.1 H10 ring

We consider a circular arrangement of ten hydrogen atoms, with a nearest-neighbor distance of 1.5 a0

between each pair of atoms (where a0 ' 0.529 Å is the Bohr radius). The system is treated using
the STO-6G basis set and is half-filled, i.e., containing ten electrons. We partition the system into five
fragments, each consisting of two atoms, as shown in Figure 2.1.

Figure 2.1: Depiction of the H10 system in circular geometry. The red-shaded areas show the chosen
fragmentation.

In order to numerically confirm that DMET is exact to first order for this “well-behaved” system, we
determine Pα for α ∈ [0, 1] and compute ‖dPα/dα‖F . Figure 2.2 compares the DMET result with the
exact diagonalization result (abbreviated FCI). We clearly see that DMET is indeed exact to first order
for the considered system.

(a) (b)

Figure 2.2: (a) Shows ‖dPα/dα‖F for DMET and FCI, respectively (b) Shows the error on dPα/dα
between DMET and FCI, measured in Frobenius norm.
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2.4.2 H6 model

In this section, we will numerically investigate the assumptions required for the analysis presented in this
article. To that end, we consider a non-interacting H4−

6 system, undergoing the following transition on
a circular geometry: We begin by placing three hydrogen molecules in equilibrium geometry, i.e., bond
length of 1.4 a0, equidistantly on a circle of radius 3 a0. We then dissociate each hydrogen molecule while
maintaining a circular geometry. Specifically, we break each hydrogen molecule in such a way that the
hydrogen atoms from neighboring molecules can form new molecules. We stop this transition at Θ =
Θmax, when the hydrogen atoms from neighboring molecules form new hydrogen molecules in equilibrium
geometry. We steer this transition with the angle Θ that measures the displacement of the individual
hydrogen atoms relative to their initial positions. The dissociation is done in a manner that maintains
the circular arrangement of the hydrogen atoms throughout the process, see Figure 2.3 for a schematic
depiction of this process and a depiction of Θ. The system is partitioned into 3 fragments that correspond
to the initial molecules. Note that the fragments remain unchanged during the transition process. In
order to fulfill the N -representability condition (2.33) below (which is necessary for Assumption (A3) to
be fulfilled), we dope the system with four additional electrons, i.e., 10 electrons in total. The system is
discretized using the 6-31G basis set.

Θ

Figure 2.3: Schematic depiction of the considered H6 transition. The left panel shows the initial config-
uration for Θ = 0; the right panel shows the final configuration Θ = Θmax. The red-shaded areas depict
the imposed fragmentation. The arrows indicate the transition of the hydrogen atoms for Θ ∈ [0,Θmax].

In order to numerically depict Theorem 2.5, we compute Pα andDα using a mean-field theory approach
(HF), DMET, and the exact diagonalization (FCI), and compare these quantities for α = 0 as well as
their first derivatives with respect to α. Note that in the non-interacting limit, the mean-field theory
is exact, which is reflected in our simulations. We indeed observe that supΘ ‖PHF

0 (Θ) − PFCI
0 (Θ)‖F

and supΘ ‖DHF
0 (Θ)−DFCI

0 (Θ)‖F are equal to zero up to numerical accurary, while supΘ ‖PDMET
0 (Θ)−

PFCI
0 ‖F (Θ), , supΘ ‖DDMET

0 (Θ) −DFCI
0 (Θ)‖F are respectively of the order of 10−13 and 10−7 with the

chosen convergence thresholds. Figure 2.4 shows the first-order exactness of DMET in the non-interacting
limit for the H4−

6 model.

Our numerical investigations include an analysis of Assumptions (A1)-(A4). We present a check
of Assumptions (A1) and (A2) in Figure 2.5. Assumption (A1) can be directly tested by calculating
the HOMO-LUMO gap of the non-interacting Hamiltonian under consideration for each value of Θ.
Furthermore, Assumption (A2) can be tested by monitoring the behavior of the smallest and largest
singular values of the matrix P0 as a function of the variable Θ (see Lemma 2.6).
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(a) (b)

Figure 2.4: (a) Shows ‖∂αPα
∣∣
α=0
‖F for HF, DMET and FCI (b) Shows ‖∂αDα

∣∣
α=0
‖F for HF, DMET

and FCI.

(a) (b)

Figure 2.5: (a) Shows the HOMO-LUMO gap for the H6 model as a function of Θ for α = 0. (b) Shows
the largest and smallest singular values of P for the H6 model as a function of Θ for α = 0.

The validity of assumptions (A3) and (A4) is tested in Figure 2.6 by monitoring the lowest eigenvalue
of the operator S := (Bd|TD0

D→Y)∗Bd|TD0
D→Y (which corresponds to (A3)), and the smallest singular

value of the operator R|Y→Y (which corresponds to (A4)).

We see that Assumptions (A1) and (A2) are uniformly fulfilled over the whole range [0,Θmax]. As-
sumption (A3) seems to be satisfied for all Θ except two values Θ1 ' 0.885 and Θ2 ' 0.957. Careful
testing around Θ2 shows that Assumption (A4) is additionally not satisfied at Θ3 ' 0.958, where all
other assumptions are satisfied. This illustrates the fact that in the general case Nf < L, Assumption
(A4) is independent of Assumptions (A1)-(A3) (see Remark 2.3).

Figure 2.7a shows the Frobenius norms of the second derivative of Pα and Dα at α = 0 for HF,
DMET, and FCI. We see that the three methods give different results, and that the result in Theorem 2.5
is therefore optimal. We also observe that for DMET, the second derivatives become noisy in the range
of Θ’s where Assumptions (A3) and (A4) are poorly or not satisfied. This is probably due to conditioning
issues or to the use of convergence thresholds not directly connected to the computed quantity of interest.
The numerical analysis of DMET is left for future work.
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(a) (b)

Figure 2.6: (a) The orange line shows the lowest eigenvalue of S := (Bd|TD0
D→Y)∗Bd|TD0

D→Y for the
H6 model as a function of Θ for α = 0 (which corresponds to (A3)), and the blue line shows the smallest
singular value σmin of R|Y→Y (which corresponds to (A4)). (b) Shows a zoomed version of (a) around
the second (local) minimum.

(a) (b)

Figure 2.7: (a) shows ‖∂2
αPα

∣∣
α=0
‖F for HF, DMET and FCI (b) shows ‖∂2

αDα

∣∣
α=0
‖F for HF, DMET

and FCI.

We now investigate more closely the violation of the hypotheses at Θ3, where R is not invertible, but
(A3) is still satisfied. To that end, we compute the differential of FDMET

0 (P0) at P0, as a function of Θ,
and see that for Θ close to Θ3, FDMET

0 (P0(Θ)) possesses a simple real eigenvalue which transitions from
being positive (for Θ < Θ3) to being negative (for Θ > Θ3), with all other eigenvalues having negative real
parts. As is standard, this type of eigenvalue crossing generically gives rise to a transcritical bifurcation
[47]. This suggests the existence of another branch of solutions P1(Θ) of P = FDMET

0 (P ), which collides
with P0(Θ) at Θ = Θ3, and such that the largest eigenvalue of the differential of FDMET

0 at P0 has the
opposite sign to that at P1.

To find this branch of solutions, we employ a Newton algorithm on FDMET
0 . Since we are looking

at small differences, this requires accurate computations of FHL
0 and FLL

0 as well as their differentials
(without resorting to finite differences). The differential of FHL

0 is computed analytically by perturbation
theory (taking into account the self-consistent Fermi level). For FLL

0 , we implemented a manifold Newton
algorithm to compute an accurate solution of the problem defining the low-level solver. This is done by,
starting from the point Dn, parametrizing Dn+1 as D(X) with an unconstrained matrix X as in the
proof of Lemma 2.10, and then performing a Newton step on the Lagrangian L(X,Λ) that corresponds
to minimizing EHF (D(X)) subject to Bd(D(X)) = P . From the Hessian of the Lagrangian one can also
compute the differential of FLL

0 , and then ultimately of FDMET
0 .

To initialize the Newton algorithm on FDMET
0 at a given Θ close to Θ3, we start from P0, and
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compute the eigenvector Y of dFDMET
0 associated with the eigenvalue that crosses zero. Then, we run a

Newton algorithm started from P0 +α(Θ−Θ3)Y , where α is an empirically chosen parameter (its precise
determination involves higher derivatives [47], which are cumbersome to compute). We observe the two
branches P0 and P1 shown in Figure 2.8, confirming the transcritical bifurcation. Let us emphasize that
this bifurcation is not due to symmetry breaking, as can be shown from a detailed analysis of the solutions
P0 and P1 (see Appendix 2.B).

0.95795 0.95800 0.95805 0.95810

5.5275

5.5276

5.5277

5.5278

5.5279

5.5280

5.5281

5.5282

P

Two branches of solutions
P0
P1

Figure 2.8: The two branches P0 and P1 (displayed are the scalars
∑
ij Pij) as functions of Θ near Θ = Θ3.
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2.5 Impurity problems and high-level map

2.5.1 Impurity Hamiltonians

It follows from the considerations in Section 2.2.2 that if

∀x ∈ [[1, Nf ]], dim(DXx) = dim((1−D)Xx) = Lx.

the impurity problem is well-defined for each fragment since the maximal rank assumption (2.11) is
satisfied for each Xx. The next lemma gives useful equivalent characterizations of these conditions.

Let us introduce the matrix

Ex := matBat(eκ, κ ∈ Ix) =

 0L′x×Lx
ILx

0L′′x×Lx

 ∈ RL×Lx with

{
L′x :=

∑
1≤x′<x Lx′

L′′x :=
∑
x<x′≤Nf Lx′

(2.27)

representing the orbitals of fragment x ∈ [[1, Nf ]], whose range is Xx. We recall that
◦
P denotes the

interior of the set P = Bd(CH(D)) in the affine space P0 + Y.

Lemma 2.6 (Compatibility conditions). Let D ∈ D. The following assertions are equivalent:

1. Bd(D) ∈
◦
P;

2. ∀x ∈ [[1, Nf ]], dim(DXx) = dim((1−D)Xx) = Lx;

3. ∀x ∈ [[1, Nf ]], 0 < ETxDEx < 1 (all the eigenvalues of ETxDEx are in (0, 1));

4. ∀x ∈ [[1, Nf ]], ETxDEx ∈ GLR(Lx) and ETx (1−D)Ex ∈ GLR(Lx).

If D satisfies these conditions, we say that it is compatible with the fragment decomposition.

It is easily seen that if D is compatible with the fragment decomposition, then the column vectors
defined by the matrix

Cx(D) :=

(
DEx

(
ETxDEx

)−1/2
∣∣∣∣(1−D)Ex

(
ETx (1−D)Ex

)−1/2
)
∈ RL×2Lx (2.28)

form an orthonormal basis of the impurity one-particle state space Wx,D defined in (2.10). More precisely,
the first Lx columns of Cx(D) form an orthonormal basis of DXx and its last Lx columns form an
orthonormal basis of (1−D)Xx. Likewise, the column vectors of the matrix

C̃x(D) :=

(
Ex

∣∣∣∣(1−Πx)DEx
(
ETxD(1−Πx)DEx

)−1/2
)
∈ RL×2Lx (2.29)

form an orthonormal basis of Xx ⊕ (1−Πx)DXx.

We denote by âxj (D) and âxj (D)†, 1 ≤ j ≤ 2Lx the annihilation and creation operators in the basis of
the columns of Cx(D):

âxj (D) =

L∑
κ=1

(Cx(D))κj âκ, âxj (D)† =

L∑
κ=1

(Cx(D))κj â
†
κ.

These operators allow for an explicit form of the impurity Hamiltonian Ĥ imp
x,D as follows.

Proposition 2.7 (Impurity Hamiltonian). Let D ∈ D be compatible with the fragment decomposition.

The x-th impurity Hamiltonian Ĥ imp
x,D is the operator on Fock(Wx,D) given by

Ĥ imp
x,D = Eenv

x (D) +

2Lx∑
i,j=1

[
Cx(D)T (h+ J(Dx(D))−K(Dx(D)))Cx(D)

]
ij
âi(D)†âj(D)

+
1

2

2Lx∑
i,j,k,`=1

[V x(D)]ijklâi(D)†âj(D)†â`(D)âk(D), (2.30)

where
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� the Coulomb and exchange matrices J(Dx(D)) ∈ RL×L and K(Dx(D)) ∈ RL×L for the x-th impu-
rity are constructed from the density matrix

Dx(D) := D −DEx(ETxDEx)−1ETxD ∈ Gr(N − Lx, L); (2.31)

� the rank-4 tensor V x(D) is given by

[V x(D)]ijkl :=

L∑
κ,λ,ν,ξ=1

Vκλνξ[C
x(D)]κi[C

x(D)]λj [C
x(D)]νk[Cx(D)]ξ`; (2.32)

� the value of the (irrelevant) constant Eenv
x (D) is given in (2.39).

Note that the matrix Dx(D) is in fact the one-body density matrix associated with the Slater deter-
minant Ψ0,core

x,D (see Section 2.2.2).

2.5.2 Domain of the high-level map

A matrix D ∈ D is in the domain of the high-level map FHL formally defined in Section 2.2.3 if and only
if

1. D is compatible with the fragment decomposition (see Lemma 2.6), in such a way that the impurity
problem (2.15) is well defined for each x;

2. the set

MD :=

{
µ ∈ R

∣∣∣∣ ∀x, the impurity problem (2.15) has a unique ground-state 1-RDM Px,D,µ,

and

Nf∑
x=1

Tr (ΠxPx,D,µΠx) = N

}
is non-empty;

3. the function

FD : MD 3 µ 7→
Nf∑
x=1

ΠxPx,D,µΠx ∈ P

is a constant over MD, which we denote by FHL(D).

In the proof of Theorem 2.4, we will study FHL
α in the non-interacting (α = 0) and weakly interacting

(|α| small ) cases. We will see that in these regimes the domain of FHL
α contains a neighborhood of D0

in D.

2.6 N-representability and low-level map

In this section, we focus our study on the low level map defined in (2.19). Clearly, (2.19) has minimizers
if and only if P ∈ Bd(D) (otherwise, the feasible set of the minimization problem is empty).

The next Lemma covers the extreme cases of minimal (Nf = 2) and maximal (Nf = L) numbers of
fragments.

Lemma 2.8 (Global N -representability).

1. If Nf = L (one site per fragment), then Bd(D) = Bd(CH(D)) = P.

2. If Nf = 2 and L ≥ 3, then Bd(D) ( Bd(CH(D)) = P. More precisely,

Bd(D) =
{
P ∈ P

∣∣ ∀0 < n < 1, dim(Ker(Π1PΠ1 − n)) = dim(Ker(Π2PΠ2 − (1− n))
}
.

Our analysis of the DMET method in the non-interacting and weakly perturbative settings relies on
the following weaker N -representability result.
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Definition 2.9 (Local N -representability). Let D ∈ D be compatible with the fragment decomposition.
We say that the local N -representability condition is satisfied at D if the linear map Bd is surjective from
TDD to Y.

Note that Assumption (A3) can be rephrased as: the local N -representability condition is satisfied at
D0.

A necessary condition for the local N -representability condition to be satisfied at some D ∈ Bd−1P̊
is that

N(L−N) = dim(D) = dim(RNv×N ) ≥ dim(Y) =

Nf∑
x=1

Lx(Lx + 1)

2
− 1. (2.33)

If Nf = L (one site per fragment), the above condition reads N(L − N) ≥ L − 1, and is therefore
satisfied for any 1 ≤ N ≤ L − 1, i.e. for any non-trivial case. On the other hand, if Nf = 2 and

L = 2L1 = 2L2 (two fragments of identical sizes), the necessary condition reads N(L−N) ≥ L(L+2)
4 − 1

and is never satisfied as soon as L ≥ 3. This result is in agreement with the global N -representability
results in Lemma 2.8. In usual DMET calculations, condition (2.33) is always satisfied, so that, generically,
P and Bd(D) coincide in the neighbourhood of P0.

The next lemma provides a sufficient local N -representability criterion.

Lemma 2.10 (A local N -representability criterion). Let D ∈ D be compatible with the fragment decom-
position (i.e. D ∈ Bd−1P̊). The following assertions are equivalent:

1. the local N -representability condition is satisfied at D;

2. the only matrices M ∈ RL×Lsym commuting with both D and the matrices Πx for all 1 ≤ x ≤ Nf are
of the form M = λIL for some λ ∈ R;

3. if Φ ∈ RL×L is an orthogonal matrix such that

D = Φ

(
IN 0
0 0

)
ΦT , (2.34)

then the linear map

R(L−N)×N 3 X 7→
Nf∑
x=1

ΠxΦ

(
0 XT

X 0

)
ΦTΠx ∈ Y (2.35)

is surjective.

The third assertion of Lemma 2.10 gives a practical way to check the local N -representability criterion:
it suffices to (i) diagonalize D in order to write it as in (2.34) (the columns of Φ ∈ O(L) form an
orthonormal basis of eigenvectors of D), (ii) assemble the matrix of the linear map (2.35) in the canonical
bases of R(L−N)×N and Y, and (iii) check whether the number of positive singular values of this matrix

is equal to dim(Y) =
∑Nf
x=1

Lx(Lx+1)
2 − 1.

2.7 Proofs

2.7.1 Proof of Lemma 2.6

Let D ∈ D.

2) ⇐⇒ 3). Assume that

∀1 ≤ x ≤ Nf , dim(DXx) = dim((1−D)Xx) = Lx.

Since D2 = D, we have for all y ∈ RLx ,

yT (ETxDEx)y = yT (ETxD
2Ex)y = (D(Exy))T (D(Exy)) = |D(Exy)|2, (2.36)

and therefore,
0 ≤ yT (ETxDEx)y = |D(Exy)|2 ≤ |Exy|2 = |y|2.
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Thus 0 ≤ ETxDEx ≤ 1 in the sense of hermitian matrices. Assume now that yT (ETxDEx)y = 0. Then,
Exy ∈ Ker(D). But we also have Exy ∈ Xx. Since dim(DXx) = Lx, this implies that y = 0. Thus
0 < ETxDEx in the sense of hermitian matrices. Likewise, we have ETxDEx < 1. This proves that 2)
=⇒ 3). Conversely, if for all 1 ≤ x ≤ Nf , 0 < ETxDEx, we infer from (2.36) that D(Exy) = 0 implies
y = 0, hence that dim(DXx) = Lx. Likewise, ETxDEx < 1 implies dim((1−D)Xx) = Lx. Therefore, 3)
=⇒ 2).

3) ⇐⇒ 4). Since 0 < ETxDEx is equivalent to ETxDEx ∈ GLR(Lx) and ETxDEx < 1 is equivalent to
ETx (1−D)Ex ∈ GLR(Lx), we conclude that 3) ⇐⇒ 4).

Lastly, it follows from the definition of P that

P =


P1 0 · · · 0
0 P2 · · · 0
...

. . .
...

0 0 · · · PNf

 ∈ ◦P ⇐⇒ (∀1 ≤ x ≤ Nf , 0 < Px = ETx PEx < 1). (2.37)

This shows that 1) ⇐⇒ 3), which concludes the proof.

2.7.2 Proof of Proposition 2.7

Let D ∈ D and 1 ≤ x ≤ Nf . Let us first concatenate the matrix Cx(D) ∈ RL×2Lx introduced in (2.28)
with a matrix Cxenv(D) ∈ RL×(L−2Lx) in order to form an orthogonal matrix

Cx(D) = (Cx(D)|Cxenv(D)) ∈ O(L).

The column vectors of Cx(D) define an orthonormal basis of H = RL adapted to the decomposition
H = Wx,D ⊕Henv

x,D. The generators of the real CAR algebra associated with this basis are given by

âxi (D) =

L∑
κ=1

Cx(D)κiâκ, âxi (D)† =

L∑
κ=1

Cx(D)κiâ
†
κ,

so that the Hamiltonian

Ĥ =

L∑
κ,λ=1

hκλâ
†
κâλ +

1

2

L∑
κ,λ,ν,ξ=1

Vκλνξâ
†
κâ
†
λâξâν

can be rewritten as

Ĥ =

L∑
i,j=1

[hx(D)]ij â
x
i (D)†âxj (D) +

1

2

L∑
i,j,k,l=1

[V x(D)]ijkl â
x
i (D)†âxj (D)†âxl (D)âxk(D)

with

[hx(D)]ij :=

L∑
κ,λ=1

hκλC
x(D)κiC

x(D)λj i.e. hx(D) = Cx(D)ThCx(D)

and

[V x(D)]ijkl :=

L∑
κ,λ,ν,ξ=1

VκλνξC
x(D)κiC

x(D)λjC
x(D)νkC

x(D)ξl.

Note that if 1 ≤ i, j, k, l ≤ 2Lx,

[hx(D)]ij = [Cx(D)ThCx(D)]ij and [V x(D)]ijkl :=

L∑
κ,λ,ν,ξ=1

VκλνξC
x(D)κiC

x(D)λjC
x(D)νkC

x(D)ξl,

in agreement with (2.32). Let Ψ ∈ Fock(H) be of the form

Ψ = Ψimp
x,D ∧Ψ0,core

x,D with Ψimp
x,D ∈ Fock(Wx,D) and Ψ0,core

x,D ∈
(N−Lx)∧

Hcore
x,D .
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We have

〈Ψ|Ĥ|Ψ〉 =
〈
Ψimp
x,D ∧Ψ0,core

x,D

∣∣ L∑
i,j=1

[hx(D)]ij â
x
i (D)†âxj (D)

+
1

2

L∑
i,j,k,l=1

[V x(D)]ijklâ
x
i (D)†âxj (D)†âxl (D)âxk(D)

∣∣Ψimp
x,D ∧Ψ0,core

x,D

〉
.

The terms in the Hamiltonian which change the number of particles in the impurity space or the environ-
ment do not contribute. The terms which act only on the environment subspace yield a term proportional
to ‖Ψimp

x,D‖2. Expanding the above expression, we thus obtain

〈Ψ|Ĥ|Ψ〉 = a1 + a2 + a3 + a4 + a5 + a6 + a7

with

a1 : =

2Lx∑
i,j=1

[hx(D)]ij〈Ψimp
x,D ∧Ψ0,core

x,D |âxi (D)†âxj (D)|Ψimp
x,D ∧Ψ0,core

x,D 〉

=

2Lx∑
i,j=1

[hx(D)]ij〈Ψimp
x,D|âxi (D)†âxj (D)|Ψimp

x,D〉

=

2Lx∑
i,j=1

[Cx(D)ThCx(D)]ij〈Ψimp
x,D|âxi (D)†âxj (D)|Ψimp

x,D〉,

a2 : =

L∑
i,j=2Lx+1

[hx(D)]ij〈Ψimp
x,D ∧Ψ0,core

x,D |âxi (D)†âxj (D)|Ψimp
x,D ∧Ψ0,core

x,D 〉

=

 L∑
i,j=2Lx+1

[hx(D)]ij〈Ψ0,core
x,D |âxi (D)†âxj (D)|Ψ0,core

x,D 〉

 ‖Ψimp
x,D‖2,

a3 : =

L∑
i=2Lx+1

2Lx∑
j=1

[hx(D)]ij〈 Ψimp
x,D ∧Ψ0,core

x,D︸ ︷︷ ︸
Lx part. in imp.

(N − Lx) part. in env.

| âxi (D)†âxj (D)|Ψimp
x,D ∧Ψ0,core

x,D 〉︸ ︷︷ ︸
(Lx + 1) part. in imp.

(N − Lx − 1) part. in env.

= 0,

a4 : =

2Lx∑
i=1

L∑
j=2Lx+1

[hx(D)]ij〈 Ψimp
x,D ∧Ψ0,core

x,D︸ ︷︷ ︸
Lx part. in imp.

(N − Lx) part. in env.

| âxi (D)†âxj (D)|Ψimp
x,D ∧Ψ0,core

x,D 〉︸ ︷︷ ︸
(Lx − 1) part. in imp.

(N − Lx + 1) part. in env.

= 0,

a5 : =
1

2

2Lx∑
i,j,k,l=1

[V x(D)]ijkl〈Ψimp
x,D ∧Ψ0,core

x,D |âxi (D)†âxj (D)†âxl (D)âxk(D)|Ψimp
x,D ∧Ψ0,core

x,D 〉

=
1

2

2Lx∑
i,j,k,l=1

[V x(D)]ijkl〈Ψimp
x,D|âxi (D)†âxj (D)†âxl (D)âxk(D)|Ψimp

x,D〉,

a6 : =
1

2

L∑
i,j,k,l=2Lx+1

[V x(D)]ijkl〈Ψimp
x,D ∧Ψ0,core

x,D |âxi (D)†âxj (D)†âxl (D)âxk(D)|Ψimp
x,D ∧Ψ0,core

x,D 〉

=

1

2

L∑
i,j,k,l=2Lx+1

[V x(D)]ijkl〈Ψ0,core
x,D |âxi (D)†âxj (D)†âxl (D)âxk(D)|Ψ0,core

x,D 〉

 ‖Ψimp
x,D‖2,
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a7 : =
1

2

2Lx∑
i,k=1

L∑
j,l=2Lx+1

([V x(D)]ijkl−[V x(D)]ijlk−[V x(D)]jikl+[V x(D)]jilk)

× 〈Ψimp
x,D ∧Ψ0,core

x,D |âxi (D)†âxj (D)†âxl (D)âxk(D)|Ψimp
x,D ∧Ψ0,core

x,D 〉︸ ︷︷ ︸
〈Ψimp

x,D|âxi (D)†âxk(D)|Ψimp
x,D〉〈Ψ

0,core
x,D |âxj (D)†âxl (D)|Ψ0,core

x,D 〉

.

Noticing that

∀2Lx + 1 ≤ j, l ≤ L, 〈Ψ0,core
x,D |âxj (D)†âxl (D)|Ψ0,core

x,D 〉 = (Cx(D)TDCx(D))jl (2.38)

we get

a7 =
1

2

2Lx∑
i,k=1

L∑
j,l=2Lx+1

([V x(D)]ijkl−[V x(D)]ijlk−[V x(D)]jikl+[V x(D)]jilk)

× (Cx(D)TDCx(D))jl〈Ψimp
x,D|âxi (D)†âxk(D)|Ψimp

x,D〉

=

2Lx∑
i,j=1

( L∑
k,l=2Lx+1

([V x(D)]ikjl−[V x(D)]iklj−[V x(D)]kijl+[V x(D)]kilj)(C
x(D)TDCx(D))kl

)
× 〈Ψimp

x,D|âxi (D)†âxj (D)|Ψimp
x,D〉.

It holds for all 1 ≤ i, j ≤ 2Lx,

L∑
k,l=2Lx+1

[V x(D)]ikjl(C
x(D)TDCx(D))kl

=

L∑
k,l=2Lx+1

L∑
κ,λ,ν,ξ,σ,τ=1

Vκλνξ[C
x(D)]κi[C

x(D)]λk[Cx(D)]νj [C
x(D))]ξl[C

x(D)]σkDστ [Cx(D)]τl

=

L−2Lx∑
k,l=1

L∑
κ,λ,ν,ξ,σ,τ=1

Vκλνξ[C
x(D)]κi[C

x
env(D)]λk[Cx(D)]νj [C

x
env(D))]ξl[C

x
env(D)]σkDστ [Cxenv(D)]τl

=

L∑
κ,ν=1

[Cx(D)]κi

 L∑
λ,ξ,σ,τ=1

Vκλνξ

(
L−2Lx∑
k=1

[Cxenv(D)]λk[Cxenv(D)]σk

)

×Dστ

(
L−2Lx∑
l=1

[Cxenv(D)]τl[C
x
env(D)]ξl

))
[Cx(D)]νj

=

L∑
κ,ν=1

[Cx(D)]κi

 L∑
λ,ξ,σ,τ=1

Vκλνξ
(
Cxenv(D)Cxenv(D)TDCxenv(D)Cxenv(D)T

)
λξ

 [Cx(D)]νj

=
[
Cx(D)TJ(D̃x(D))Cx(D)

]
ij
,

with, recalling that Cx(D) = (Cx(D)|Cxenv(D)) is an orthogonal matrix,

D̃x(D) : = Cxenv(D)Cxenv(D)TDCxenv(D)Cxenv(D)T

= (1− Cx(D)Cx(D)T )D(1− Cx(D)Cx(D)T )

= D −DEx(ETxDEx)−1ETxD

= Dx(D) (see (2.31)).

Using similar arguments, we get

a7 =

2Lx∑
i,k=1

[
Cx(D)T (J(Dx(D))−K(Dx(D)))Cx(D)

]
ij
〈Ψimp

x,D|âxi (D)†âxj (D)|Ψimp
x,D〉.

We finally obtain
〈Ψ|Ĥ|Ψ〉 = 〈Ψimp

x,D|Ĥ imp
x,D |Ψimp

x,D〉,
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where Ĥ imp
x,D is given by (2.30) with

Eenv(D) =

L∑
i,j=2Lx+1

[hx(D)]ij〈Ψ0,core
x,D |âxi (D)†âxj (D)|Ψ0,core

x,D 〉

+
1

2

L∑
i,j,k,l=2Lx+1

[V x(D)]ijkl〈Ψ0,core
x,D |âxi (D)†âxj (D)†âxl (D)âxk(D)|Ψ0,core

x,D 〉. (2.39)

2.7.3 Proof of Lemma 2.8

The first assertion is a direct consequence of [21, Theorem 6].

We now prove the second assertion. Let

K :=
{
P = (P1, P2) ∈ RL1×L1

sym × RL2×L2
sym

∣∣∀0 < n < 1, dim(Ker(P1 − n)) = dim(Ker(P2 − (1− n))
}
.

Let P = (P1, P2) ∈ Bd(D) and D ∈ D be such that Bd(D) = P . Let U1 and U2 be two orthogonal matrices
of sizes (L1×L1) and (L2×L2) respectively, and D1 = diag(m1, · · · ,mL1

) and D2 = diag(m′1, · · · ,m′L2
)

two diagonal matrices with entries in the range [0, 1] ranked such that m1 ≥ · · · ≥ mL1
and m′1 ≤ · · · ≤

m′L2
, such that P1 = U1D1U

T
1 and P2 = U2D2U

T
2 . It holds

D =

(
U1 0
0 U2

)(
D1 C
CT D2

)(
UT1 0
0 UT2

)
for some C ∈ RL1×L2 .

The condition D2 = D reads

CCT = D1 −D2
1, CTC = D2 −D2

2, C −D1C − CD2 = 0,

that is

∀1 ≤ i ≤ L1, ∀1 ≤ j ≤ L2,

L2∑
k=1

C2
ik = mi −m2

i ,

L1∑
k=1

C2
kj = m′j −m′j

2
, (1−mi −m′j)Cij = 0.

This implies that Cij = 0 unless m′j = 1 −mj and that Cij = 0 whenever mi = 0 or 1, or m′j = 0 or 1.
It follows that(

UT1 0
0 UT2

)
D

(
U1 0
0 U2

)

=



Ir1
n1Id1

C1

. . .
. . .

n`Id` C`
0s1

0s2
CT1 (1− n1)Id′1

. . .
. . .

CT` (1− n`)Id′`
Ir2


, (2.40)

with 0 < n` < · · · < n1 < 1. Using again the idempotency of D, we obtain the relations CjC
T
j =

nj(1 − nj)Idj and CTj Cj = nj(1 − nj)Id′j . Taking the trace leads to dj = d′j . Therefore, P ∈ K so that

Bd(D) ⊂ K.

Conversely, let P ∈ K and U1, U2, D1, D2 as before. Then UT1 P1U1 and UT2 P2U2 read as the diagonal
blocks of the right-hand side of (2.40) with dj = d′j for all j. Setting Cj =

√
nj(1− nj)Idj , the matrix

D defined by (2.40) is in MS and satisfies Bd(D) = P . Hence, P ∈ Bd(D) and therefore K ⊂ Bd(D).
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2.7.4 Proof of Lemma 2.10

Let Nv := L−N . For X ∈ RNv×N such that ‖X‖ < 1/2, we set

fΦ(X) : = Φ

(
1
2

(
IN + (IN − 4XTX)1/2

)
XT

X 1
2

(
INv − (INv − 4XXT )1/2

) )ΦT ,

gΦ(X) : = Bd(fΦ(X)).

The map fΦ provides a local system of coordinates of D in the vicinity of D. Therefore, the local
N -representability condition is satisfied at D if and only if the map

d0gΦ : RNv×N 3 X 7→ d0gΦ =

Nf∑
x=1

ΠxΦ

(
0 XT

X 0

)
ΦTΠx ∈ Y

is surjective. This proves the equivalence between the first and third assertions of the lemma.

Writing Φ as Φ = (Φocc|Φvirt) with Φocc ∈ RL×N and Φvirt ∈ RL×Nv , the adjoint of d0gΦ is given by

d0g
∗
Φ : Y 3 Y 7→ d0g

∗
Φ(Y ) = 2ΦvirtTY Φocc ∈ RNv×N .

We therefore have for all Y ∈ Y,

(d0gΦd0g
∗
Φ)Y = 2

Nf∑
x=1

Πx ((1−D)Y D +DY (1−D)) Πx, (2.41)

and therefore

‖d0g
∗
Φ(Y )‖2 = Tr (Y (d0gΦd0g

∗
Φ)(Y ))) = 2Tr

Y Nf∑
x=1

Πx ((1−D)Y D +DY (1−D)) Πx


= 2Tr

 Nf∑
x=1

ΠxYΠx ((1−D)Y D +DY (1−D))


= 2Tr (Y ((1−D)Y D +DY (1−D))) = 4‖(1−D)Y D‖2.

Thus
∀Y ∈ Y, ‖d0g

∗
Φ(Y )‖ = 2‖(1−D)Y D‖.

The map d0gΦ is surjective if and only if its adjoint is injective. Thus the criterion is satisfied if and only
if

∀Y ∈ Y, (1−D)Y D = 0 ⇒ Y = 0.

As D is an orthogonal projector, (1 − D)Y D = 0 if and only if Y commutes with D. In addition, a
matrix Y ∈ RL×Lsym is in Y if and only if (i) it commutes with all the Πx’s, and (ii) its trace is equal to 0.

Thus, the criterion is satisfied if and only if any zero trace matrix Y ∈ RL×Lsym commuting with D and the

Πx’s is the null matrix. Lastly, this condition is equivalent to: any matrix Y ∈ RL×Lsym commuting with D
and the Πx’s is of the form λIL for some λ ∈ R. This completes the proof of the second statement.

2.7.5 Proof of Proposition 2.1

For α = 0, the low-level map is formally given by

FLL
0 (P ) = argmin

D∈D, Bd(D)=P

Tr(hD) (formal). (2.42)

Under Assumption (A1) (i.e. εN < 0 < εN+1), D0 is the unique minimizer of

argmin
D∈D

Tr(hD).

Since Bd(D0) = P0 (by definition of P0), D0 is the unique minimizer of (2.42) for P = P0. Thus, P0 is
in the domain of FLL

0 and FLL
0 (P0) = D0.
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For α = 0, the high-level map takes the simple formal expression

FHL
0 (D) =

Nf∑
x=1

ΠxC
x(D)1(−∞,0]

(
Cx(D)T (h− µΠx)Cx(D)

)
Cx(D)TΠx (formal),

where Cx(D) is defined in (2.28) and µ ∈ R is such that

Nf∑
x=1

Tr
(
ΠxC

x(D)1(−∞,0]

(
Cx(D)T (h− µΠx)Cx(D)

)
Cx(D)TΠx

)
= N.

Therefore, a matrix D ∈ D is in the domain of FHL
0 if and only if

1. the set

MD :=

µ ∈ R
∣∣ Nf∑
x=1

Tr
(
ΠxC

x(D)1(−∞,0]

(
Cx(D)T (h− µΠx)Cx(D)

)
Cx(D)TΠx

)
= N


is non-empty;

2. the function

FD : MD 3 µ 7→
Nf∑
x=1

ΠxC
x(D)1(−∞,0]

(
Cx(D)T (h− µΠx)Cx(D)

)
Cx(D)TΠx ∈ RL×Lsym

is constant over MD. Its value is an element of P, which we denote by FHL
0 (D).

Let us prove that under Assumptions (A1) and (A2), D0 belongs to the domain of FHL
0 and FHL

0 (D0) =
P0.

First, we observe that for each 1 ≤ x ≤ Nf , the space Wx,0 := Xx + D0Xx is D0-invariant since D0

is a projector. The linear operator D0 on RL therefore has a a block-diagonal operator representation in
the decomposition Wx,0 ⊕W⊥x,0 of H = RL:

D0 ≡
(
Dx

0 0

0 D̃x
0

)
(in the decomposition H = Wx,0 ⊕W⊥x,0),

where Dx
0 and D̃x

0 are both orthogonal projectors. The corresponding representation of h is not
necessarily block-diagonal:

h ≡
(

hx hxOD

hxOD
T h̃x

)
(in the decomposition H = Wx,0 ⊕W⊥x,0).

Let us now focus on the operator hx. To lighten the notation, we set

D0,x := ETxD0Ex.

We infer from Assumption (A2) and Lemma 2.6 that dim(D0Xx) = dim((1−D0)Xx) = Lx and

Cx0 := Cx(D0) =
(
D0ExD

−1/2
0,x |(1−D0)Ex(1−D0,x)−1/2

)
forms an orthonormal basis of Wx,0. In this basis, the operator hx is represented by the matrix

hx := Cx0
ThCx0 =

(
hx− 0
0 hx+

)
, (2.43)

with

hx− : = D
−1/2
0,x ETxD0hD0ExD

−1/2
0,x , (2.44)

hx+ : = (1−D0,x)−1/2ETx (1−D0)h(1−D0)Ex(1−D0,x)−1/2. (2.45)
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The zeros in the off-diagonal blocks of hx come from the fact that D0h(1−D0) = (1−D0)hD0 = 0 since
h and D0 commute. In addition, we have

ε1D0 ≤ D0hD0 =

N∑
i=1

εiφiφ
T
i ≤ εND0, (2.46)

εN+1(1−D0) ≤ (1−D0)h(1−D0) =

L∑
a=N+1

εaφaφ
T
a ≤ εL(1−D0). (2.47)

Combining (2.44) and (2.46) on the one hand, and (2.45) and (2.47) on the other hand, we obtain

ε1ILx ≤ hx− ≤ εNILx and εN+1ILx ≤ hx+ ≤ εLILx . (2.48)

We therefore have

1(−∞,0](h
x) = 1(−∞,0)(h

x) =

(
ILx 0
0 0

)
, 1[0,∞)(h

x) = 1(0,∞)(h
x) =

(
0 0
0 ILx

)
, (2.49)

and thus

Nf∑
r=1

ΠxC
x
0 1(−∞,0](h

x)Cx0
TΠx =

Nf∑
r=1

ΠxC
x
0

(
ILx 0
0 0

)
Cx0

TΠx

=

Nf∑
r=1

(ExE
T
x )D0ExD

−1
0,xE

T
xD0(ExE

T
x )

=

Nf∑
r=1

ΠxD0Πx = Bd(D0) = P0.

As Tr(P0) = N , we have 0 ∈MD0
and FD0

(0) = P0. Let us now show that MD0
= {0}. It holds

Πx ≡
(

Πx
x 0

0 0

)
(in the decomposition H = Wx,0 ⊕W⊥x,0),

and in the basis defined of Wx,0 defined by Cx0 , the orthogonal projector Πx
x is represented by the matrix

px := Cx0
TΠxC

x
0 =

(
D0,x D

1/2
0,x (1−D0,x)1/2

(1−D0,x)1/2D
1/2
0,x (1−D0,x)

)
. (2.50)

We therefore have in particular px2 = px = pxT . Consider the function

R 3 µ 7→ ζ(µ) : =

Nf∑
x=1

Tr
(

ΠxC
0
x1(−∞,0]

(
C0
x
T

(h− µΠx)C0
x

)
C0
x
T

Πx

)

=

Nf∑
x=1

Tr
(
px1(−∞,0] (hx − µpx)

)
=

Nf∑
x=1

Tr
(
px1(−∞,0] (hx − µpx) px

)
≥ 0.

We already know that ζ(0) = N . We see from (2.48) that 0 is not in the spectrum of h for all x. By a
simple continuity argument, we obtain that for |µ| small enough, 0 is not in the spectrum of hx−µpx for
all x. We therefore have

ζ(µ) =

Nf∑
x=1

1

2πi

∮
C

Tr
(
px (z − (hx − µpx))

−1
)
dz (for |µ| small enough), (2.51)

where C is e.g. a circle in the complex plane, centered on the negative real axis, containing 0 and of large
enough radius. It follows that ζ is analytic in the vicinity of 0 and that

ζ ′(0) = −
Nf∑
x=1

1

2πi

∮
C

Tr
(
px (z − hx)

−1
px (z − hx)

−1
)
dz =

Nf∑
x=1

〈px,L+
x p

x〉, (2.52)
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where L+
x is the linear operator on R2Lx×2Lx

sym defined by

∀M ∈ R2Lx×2Lx
sym , L+

xM = − 1

2πi

∮
C

(z − hx)
−1
M (z − hx)

−1
dz, (2.53)

which can alternatively be defined by the linear response formula

1(−∞,0](h
x +M) = 1(−∞,0](h

x)− L+
xM + o(‖M‖). (2.54)

Let us diagonalize the real symmetric matrix hx as

hx =

2Lx∑
n=1

ε̃x,nφ̃x,nφ̃
T
x,n with ε̃x,1 ≤ · · · ≤ ε̃x,2Lx , φ̃Tx,mφ̃x,n = δmn,

with (using (2.48))

∀1 ≤ i ≤ Lx, ∀Lx ≤ a ≤ 2Lx, ε̃x,i ≤ εN < 0 < εN+1 ≤ ε̃x,a.

Using Cauchy residue formula, we get

∀M =

(
M−− M+−T

M+− M++

)
∈ R2Lx×2Lx

sym , L+
xM =

(
0 N(M+−)T

N(M+−) 0

)
(2.55)

with

∀1 ≤ m,n ≤ Lx, [N(M+−)]mn =
[M+−]mn

ε̃x,m+Lx − ε̃x,n
. (2.56)

The operator L+
x is self-adjoint and positive. Denoting by γ := εN+1 − εN > 0 the HOMO-LUMO gap,

we have

∀M =

(
M−− M−+

M+− M++

)
∈ R2Lx×2Lx

sym , 〈M,L+
xM〉 ≥ 2γ−1‖M−+‖2. (2.57)

Indeed, we have

〈M,L+
xM〉 = 2

Nf∑
x=1

Lx∑
i=1

2Lx∑
a=Lx+1

|φ̃Tx,iMφ̃x,a|2
ε̃x,a − ε̃x,i

≥ 2γ−1

Nf∑
x=1

Lx∑
i=1

2Lx∑
a=Lx+1

|φ̃Tx,iMφ̃x,a|2

= 2γ−1‖1(−∞,0)(h
x)M1(0,+∞)(h

x)‖2 = 2γ−1‖M−+‖2.

Let

J0 :=

µ ∈ R
∣∣∣∣ Nf∏
x=1

det (hx − µpx) = 0

 .

Since µ 7→ det (hx − µpx) is a polynomial of degree Lx, the set J0 contains at most L elements. By similar
arguments as above, the function ζ is real-analytic and non-decreasing on each connected components of
R \ J0. At each µ0 ∈ J0, the jump of ζ is given by

ζ(µ0 + 0)− ζ(µ0 − 0) =

Nf∑
x=1

Tr
(
px1{0} (hx − µ0p

x) px
)
≥ 0.

The function ζ is therefore nondecreasing on R. As a consequence, the set MD0 is an interval ID0

containing 0. Using (2.50), (2.52) and (2.57), we get

ζ ′(0) ≥ 2γ−1

Nf∑
x=1

‖D1/2
0,x (1−D0,x)1/2‖2 = 2γ−1

Nf∑
x=1

Tr(D0,x(1−D0,x)) > 0,

since, in view of Lemma 2.6, all the eigenvalues of the symmetric matrix D0,x(1 − D0,x) are positive.
Thus MD0 = {0}. This proves that D0 is in the domain of FHL

0 and that FHL(D0) = P0.

Combining this result with the previously established relation FLL
0 (P0) = D0, we obtain that P0 is a

fixed point of the DMET map for α = 0.
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2.7.6 Proof of Theorem 2.4

We endow D with the Riemannian metric induced by the Frobenius inner product on RL×Lsym . For η > 0,
we set

ωη := {P ∈ P | ‖P − P0‖ < η} and Ωη := {D ∈ D | ‖D −D0‖ < η} .

Low-level map in the perturbative regime

Let us introduce the maps

g : D → Y s.t. ∀D ∈ D, g(D) := Bd(D)− P0,

a : D → R s.t. ∀D ∈ D, a(D) := Tr(hD),

b : D → R s.t. ∀D ∈ D, b(D) :=
1

2
Tr ((J(D)−K(D))D) ,

E : R×D → R s.t. ∀(α,D) ∈ R×D, E(α,D) := EHF
α (D) = a(D) + αb(D).

Since the maps Bd, J,K : RL×Lsym → RL×Lsym are linear, the maps g, a, b and E are real-analytic. With this
notation, we have

(Assumption (A3)) ⇐⇒ (B := dD0
g = Bd : TD0

D → Y surjective) .

Lemma 2.11 (Low-level map in the perturbative regime). Under Assumptions (A1)-(A3), there exists
αLL > 0 and 0 < ηLL <

1
2 such that

1. ωηLL
⊂ Dom(FLL

α ) for all α ∈ (−αLL, αLL);

2. the function (α, P ) 7→ FLL
α (P ) is real-analytic on (−αLL, αLL)× ωYηLL

.

Proof. The first assertion means that for all (α, P ) ∈ (−αLL, αLL)× ωηLL , the problem

min
D∈D | Bd(D)=P

EHF
α (D) = min

D∈D | g(D)=P−P0

E(α,D) (2.58)

has a unique minimizer, which we denote by FLL
α (P ).

Using Lemma 2.10 and the submersion theorem, we deduce from Assumptions (A2)-(A3) that there
exists η > 0 and C ∈ R+ such that for all P ∈ ωη, the set Bd−1(P ) is nonempty and there exists
DP ∈ Bd−1(P ) such that ‖DP −D0‖ ≤ C‖P −P0‖. Let Dα,P be a minimizer of EHF

α on Bd−1(P ). Such
a minimizer exists since EHF

α is continuous on D and Bd−1(P ) is a nonempty compact subset of D, and
satisfies the optimality conditions

∇DE(α,Dα,P ) + dDα,P g
∗Λα,P = 0, g(Dα,P ) = P − P0, (2.59)

where ∇DE(α,Dα,P ) ∈ TDα,PD is the gradient at Dα,P of the function D 3 D → E(α,D) ∈ R for the
Riemannian metric induced with the Frobenius inner product, and Λα,P ∈ Y the Lagrange multiplier of
the constraint g(Dα,P ) = P − P0.

Denoting by

Cnl :=
1

2
max
D∈D

|Tr((J(D)−K(D))D)|,

we have

EHF
α (Dα,P ) ≤ EHF

α (DP ) ≤ EHF
0 (DP ) + αCnl ≤ EHF

0 (D0) + ‖h‖‖P − P0‖+ αCnl. (2.60)

To obtain a lower bound of EHF
α (Dα,P ), we use that

∀D ∈ D, EHF
0 (D) = Tr(hD) ≥ EHF

0 (D0) +
γ

2
‖D −D0‖2.

This inequality is classical, but we recall its proof for the sake of completeness. For M ∈ RL×Lsym we set

M−− := D0MD0, M−+ := D0M(1−D0), M+− := (1−D0)MD0, M++ := (1−D0)M(1−D0).

Let D ∈ D and Q := D −D0. Since D0 = 1(−∞,0](h), we have

h−+ = h+− = 0, h−− ≤ εN , h++ ≥ εN+1, Q++ ≥ 0, Q−− ≤ 0,
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and we deduce from the fact that both D and D0 are rank-N orthogonal projectors that

Q2 = Q++ −Q−− and Tr(Q++) + Tr(Q−−) = 0.

Combining all the above properties, we obtain

∀D ∈ D, a(D) = Tr(hD)

= Tr(hD0) + Tr(h(D −D0))

= a(D0) + Tr
(
h++Q++

)
+ Tr

(
h−−Q−−

)
≥ a(D0) + εN+1Tr

(
Q++

)
+ εNTr

(
Q−−

)
= a(D0) +

γ

2
Tr
(
Q++ −Q−−

)
= a(D0) +

γ

2
‖D −D0‖2. (2.61)

As EHF
0 (D) = a(D), this implies that

EHF
α (Dα,P ) ≥ EHF

0 (Dα,P )− αCnl ≥ EHF
0 (D0) +

γ

2
‖Dα,P −D0‖2 − αCnl.

Combining this result with (2.60), we obtain

‖Dα,P −D0‖2 ≤ 2γ−1 (2αCnl + ‖h‖P − P0‖) .

This implies in particular that for |α| and ‖P − P0‖ small enough, any minimizer Dα,P of (2.58) is close
to D0. To conclude, it suffices to prove that for |α| and ‖P − P0‖ small enough, (2.59) has a unique
critical point close to D0. This leads us to introduce the function

Θ : (R× P)× (D × Y) 3 ((α, P ), (D,Λ)) 7→ Θ((α, P ), (D,Λ)) ∈ TDD × Y

defined by
Θ((α, P ), (D,Λ)) := (∇DE(α,D) + (dDg)∗Λ, g(D)− (P − P0)) .

As D0 is the unique minimizer of D 7→ E(0, D) on D and P0 = Bd(D0), we have ∇DE(0, D0) = 0 and
g(D0) = 0, so that

Θ((0, P0), (D0, 0)) = (0, 0).

In addition, denoting by
A := D2

Da(D0) : TD0
D → TD0

D (2.62)

the Hessian at D0 of the function a for the Riemannian metric induced by the Frobienius inner product,
we have

∀(Q,Λ) ∈ TD0
D × Y, [dD,ΛΘ((0, P0), (D0, 0))]

(
Q
Λ

)
=

(
A B∗

B 0

)(
Q
Λ

)
,

where we recall that B := dD0
g. In view of (2.61), we have

∀Q ∈ TD0D, 〈Q,AQ〉 ≥ γ‖Q‖2. (2.63)

Since A is coercive and B : TD0D → Y is surjective, it follows from the Schur complement formula that
the map

dD,ΛΘ((0, P0), (D0, 0)) : TD0
D × Y → TD0

D × Y
is invertible. It follows from the real-analytic implicit function theorem on manifolds that there exists
αLL > 0, η > 0 and η > 0, such that for all (α, P ) ∈ (−αLL, αLL) × ωη, (2.59) has a unique solution
(Dα,P ,Λα,P ) with Dα,P ∈ ωη and the map (α, P ) 7→ Dα,P is real-analytic on (−αLL, αLL)× ωη.

High-level map in the perturbative regime

The following result states that the high-level map (α,D) 7→ FHL
α (D) is well-defined and real-analytic on

a neighborhood of (0, D0).

Lemma 2.12 (High-level map in the perturbative regime). Under Assumptions (A1)-(A2), there exists
αHL > 0 and 0 < ηHL <

1
2 such that
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1. ΩηHL
⊂ Dom(FHL

α ) for all α ∈ (−αHL, αHL);

2. the function (α,D) 7→ FHL
α (D) is real-analytic on (−αHL, αHL)× ΩηHL

.

Proof. For D ∈ D compatible with the fragment decomposition, we set

[h̃x(D)]κλ :=
[
C̃x(D)ThC̃x(D)

]
κλ

=

L∑
κ′λ′=1

[C̃x(D)]κ,κ′ [C̃
x(D)]λ,λ′hκ′λ′ , (2.64)

[Ṽx(D)]κλνξ :=

L∑
κ′λ′ν′ξ′=1

[C̃x(D)]κ,κ′ [C̃
x(D)]λ,λ′ [C̃

x(D)]ν,ν′ [C̃
x(D)]ξ,ξ′Vκ′λ′ν′ξ′ , (2.65)

where C̃x(D) is defined in Lemma 2.6. Denoting by cκ, c†κ, 1 ≤ κ ≤ 2Lx the generators of the CAR
algebra on Fock(R2Lx) associated with the canonical basis of R2Lx , the high-level map can be formally
written as

FHL
α (D) =

Nf∑
x=1

Lx∑
κ,λ=1

eL′x+κTrFock(R2Nx )

(
Γα,x,D,µc

†
κcλ
)
eTL′x+λ (formal), (2.66)

where Γα,x,D,µ ∈ L(Fock(R2Lx)) is the ground-state (many-body) density matrix associated with the
grand-canonical impurity Hamiltonian

H̃ imp
α,x,D,µ :=

2Lx∑
κ,λ=1

[h̃x(D)]κλc
†
κcλ + α

2Lx∑
κ,λ,ν,ξ=1

[Ṽx(D)]κλνξc
†
κc
†
λcξcν − µ

Lx∑
κ=1

c†κcκ,

the parameter µ ∈ R being chosen such that

Nf∑
x=1

Lx∑
κ,λ=1

TrFock(R2Nx )

(
Γα,x,D,µc

†
κcλ
)

= N.

The results established in the proof of Proposition 2.1 can be rephrased as follows: under Assumptions
(A1)-(A2),

1. the impurity Hamiltonian H̃ imp
0,x,D0,0

has a non-degenerate ground-state for each x and that it holds

Nf∑
x=1

Lx∑
κ,λ=1

TrFock(R2Nx )

(
Γ0,x,D0,0c

†
κcλ
)

= N ;

2. the function

R 3 µ 7→
Nf∑
x=1

Lx∑
κ,λ=1

TrFock(R2Nx )

(
Γ0,x,D0,µc

†
κcλ
)
∈ R

is non-decreasing, real-analytic in the neighborhood of µ = 0, and its derivative at µ = 0 is positive.

Since the maps
D 3 D 7→ [h̃x(D]κλ ∈ R and D 3 D 7→ [Ṽx(D)]κλνξ ∈ R

are real-analytic in the neighborhood of D0, we deduce from Kato’s analytic perturbation theory and the
implicit function theorem that there exists αHL > 0, ηHL > 0, and µHL > 0 such that

1. for each (α,D, µ) ∈ (−αHL, αHL)×ΩηHL × (−µHL, µHL), the impurity Hamiltonian H imp
α,x,D,µ has a

non-degenerate ground-state for each x; we denote by Γα,x,D,µ(α,X) the corresponding ground-state
many-body density matrix;

2. for each (α,D) ∈ (−αHL, αHL)× ΩηHL , there exists a unique µ(α,D) ∈ (−µHL, µHL) such that

Nf∑
x=1

Lx∑
κ,λ=1

TrFock(R2Nx )

(
Γα,x,D,µ(α,D)c

†
κcλ
)

= N ;
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3. the maps (α,D) 7→ µ(α,D), (α,D) 7→ Γα,x,D,µ(α,D), and

(α,D) 7→ FHL
α (D) :=

 Nf∑
x=1

Lx∑
κ,λ=1

eL′x+κTrFock(R2Nx )

(
Γα,x,D,µ(α,D)c

†
κcλ
)
eTL′x+λ


are real-analytic on (−αHL, αHL)× ΩηHL .

This proves the two assertions of Lemma 2.12.

Existence, uniqueness, and analyticity

We infer from Lemma 2.11 and Lemma 2.12 that there exist αDMET > 0 and ηDMET > 0 such that the
function

(−αDMET, αDMET)× ωηDMET 3 α, P 7→ Φ(α, P ) := FDMET
α (P )− P := FHL

α (FLL
α (P ))− P ∈ Y

is well-defined and real-analytic, and we know from Proposition 2.1 that

Φ(0, P0) = 0.

To complete the proof of Theorem 2.4, we have to check that the function Φ satisfies all the hypotheses
of the implicit function theorem, namely that

dPΦ(0, P0) = (dD0
FHL

0 ) (dP0
FLL

0 )− IY : Y → Y (2.67)

is invertible.

Let us first compute dP0F
LL
0 : Y → TD0D. Differentiating the equality

∀P ∈ ωη, Θ((0, P ), (FLL
0 (P ),Λ0,P )) = (0, 0),

we obtain that the derivatives at P0 of the functions ωη 3 P 7→ FLL
0 (P ) ∈ D and ωη 3 P 7→ λ(P ) :=

Λ0,P ∈ Y are characterized by the relation

∀Y ∈ Y, [dPΘ((0, P0), (D0, 0))]Y︸ ︷︷ ︸
=(0,−Y )

+ [d(D,Λ)Θ((0, P0), (D0, 0))]((dP0
FLL

0 )Y, (dP0
λ)Y )︸ ︷︷ ︸

=(A[(dP0
FLL

0 )Y ]+B∗(dP0
λ)Y ),B[(dP0

FLL
0 )Y ]

= 0,

from which we infer that
dP0

FLL
0 = A−1B∗(BA−1B∗)−1. (2.68)

Let us now compute dD0
FHL

0 : TD0
D → Y. We have

∀D ∈ ΩηHL
, FHL

0 (D) =

Nf∑
x=1

ΠxC
x(D)1(−∞,0]

(
Cx(D)T (h− µ(0, D)Πx)Cx(D)

)
Cx(D)TΠx,

where the function

D 3 D 7→ Cx(D) = (DEx(ETxDEx)−1/2︸ ︷︷ ︸
Cx−(D)

| (1−D)Ex(ETx (1−D)Ex)−1/2︸ ︷︷ ︸
Cx+(D)

) ∈ RL×(2Lx)

has been introduced in (2.28). Setting as previously Cx0 := Cx(D0), and denoting by M(Q) := [dD0C
x](Q)

and `(Q) := [dDµ(0, D0)](Q), we get

dD0
FHL(Q) =

Nf∑
x=1

Πx

(
M(Q)1(−∞,0] (hx)Cx0

T + Cx0 1(−∞,0] (hx)M(Q)T
)

Πx

−
Nf∑
x=1

ΠxC
x
0L

+
x

(
M(Q)ThCx0 + Cx0

ThM(Q)− `(Q)px
)
Cx0

TΠx.

Using (2.49), we obtain

M(Q)1(−∞,0] (hx)Cx0
T + Cx0 1(−∞,0] (hx)M(Q)T = [dD0

Cx−(Q)][Cx−(D0)]T + Cx−(D0)[dD0
Cx−(Q)]T

= dD0
[Cx−C

x
−
T ](Q).
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This implies that

Πx

(
M(Q)1(−∞,0] (hx)Cx0

T + Cx0 1(−∞,0] (hx)M(Q)T
)

Πx = dD0
[ΠxC

x
−C

x
−
TΠx](Q).

Since

ΠxC
x
−(D)Cx−(D)

T
Πx = (ExE

T
x )(DEx(ETxDEx)−1/2)((ETxDEx)−1/2ETxD)(ExE

T
x ) = ΠxDΠx,

we get dD0 [ΠxC
x
−C

x
−
TΠx](Q) = ΠxQΠx and therefore

Nf∑
x=1

Πx

(
M(Q)1(−∞,0] (hx)Cx0

T + Cx0 1(−∞,0] (hx)M(Q)T
)

Πx = Bd(Q) = BQ.

Next, observing that for all Q ∈ TD0
D,

dD0
Cx−(Q) = D0ExS−(Q) +QEx(ETxD0Ex)−1/2,

dD0
Cx+(Q) = (1−D0)ExS+(Q)−QEx(ETx (1−D0)Ex)−1/2,

with Q 7→ S±(Q) ∈ RLx×Lx linear and

Q = D0Q(1−D0) + (1−D0)QD0, (2.69)

we obtain that

M(Q)ThCx0 + Cx0
ThM(Q) =

(
∗ N(Q)T

N(Q) ∗

)
with

N(Q) : = (ETx (1−D0)Ex)−1/2ETx ((1−D0)hQ−QhD0)Ex(ETxD0Ex)−1/2

= (ETx (1−D0)Ex)−1/2ETx (1−D0)[h,Q]D0Ex(ETxD0Ex)−1/2.

We thus have

M(Q)ThCx0 + Cx0
ThM(Q) =

(
∗ 0
0 ∗

)
− Cx0 T [D0, [h,Q]]Cx0 ,

which implies, using (2.55),

L+
x

(
M(Q)ThCx0 + Cx0

ThM(Q)− `(Q)px
)

= L+
x

(
−Cx0 T [D0, [h,Q]]Cx0 − `(Q)px

)
.

We therefore obtain
dD0

FHL
0 = B + L,

with L : TD0
D → Y given by

∀Q ∈ TD0D, LQ :=

Nf∑
x=1

ΠxC
x
0L

+
x

(
Cx0

T [D0, [h,Q]]Cx0 + `(Q)px
)
Cx0

TΠx. (2.70)

Combining with (2.68), and setting
R := LA−1B∗ : Y → Y, (2.71)

we obtain
dPΦ(0, P0) = (B + L)(A−1B∗(BA−1B∗)−1)− IY = R(BA−1B∗)−1.

To conclude, we just have to show that the map R rigorously defined by (2.71) actually coincides with
the 4-point response function formally defined by (2.26) (the latter is bijective by Assumption (A4)). We
have for all Q ∈ TD0D and Y ∈ Y,

〈Q,B∗Y 〉TD0
D = 〈BQ, Y 〉Y = Tr((BQ)Y )

= Tr

 Nf∑
x=1

ΠxQΠx

Y

 =

Nf∑
x=1

Tr (ΠxQΠxY ) =

Nf∑
x=1

Tr (QΠxYΠx)

= Tr

Q
 Nf∑
x=1

ΠxYΠx

 = Tr(QY ) = Tr(Q(D0Y (1−D0) + (1−D0)Y D0)︸ ︷︷ ︸
∈TD0

D

)

= 〈Q,D0Y (1−D0) + (1−D0)Y D0〉TD0
D.
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Therefore
Y ∈ Y, B∗Y = D0Y (1−D0) + (1−D0)Y D0. (2.72)

By a classical calculation (see e.g. [4, Section 2.2]), we have

∀Q ∈ Y, AQ = −[D0, [h,Q]]. (2.73)

It is also easily checked that

Cx0
T (B∗Y )Cx0 = Cx0

T (D0Y (1−D0) + (1−D0)Y D0)Cx0 =

(
∗ 0
0 ∗

)
+ Cx0

TY Cx0 . (2.74)

Putting together (2.55) and (2.70)-(2.74) yields

RY =

Nf∑
x=1

ΠxC
x
0L

+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
Cx0

TΠx, (2.75)

where ˜̀(Y ) := `(A−1B∗Y ) = Tr(GY ) with G :=

Nf∑
x=1

Cx0L
+
x (px)Cx0

T ∈ RL×Lsym . (2.76)

Using the notation introduced in (2.26), we have

F̃HL
h+Y (D0) =

Nf∑
x=1

ΠxC
x
0 1(−∞,0]

(
Cx0

T (h+ Y − µY Πx)Cx0

)
Cx0

TΠx,

where µY ∈ R is chosen such that Tr(F̃HL
h+Y (D0)) = N . Using similar perturbation argument as in

Section 2.7.6, one can check that F̃HL
h+Y (D0) is well-defined for Y ∈ Y small enough, and that

F̃HL
h+Y (D0) =

Nf∑
x=1

ΠxC
x
0 1(−∞,0]

(
hx + (Cx0

T (Y − µY Πx)Cx0

)
Cx0

TΠx

= F̃HL
h(D0) +

Nf∑
x=1

ΠxC
x
0L

+
x

(
Cx0

T (Y + µY Πx)Cx0

)
Cx0

TΠx + o(‖Y ‖),

with µY = ˜̀(Y ) by particle conservation. This shows that the map R defined by (2.75)-(2.76) actually
coincides with the 4-point response function in Assumption (A4).

About Assumptions (A3) and (A4) in the one-site-per-fragment setting

Let us show that when Nf = L, we have under Assumptions (A1)-(A2),

(A3) are satisfied =⇒ D0 is an irreducible matrix ⇐⇒ (A4) is satisfied.

Throughout this section, we assume that (A1)-(A2) are fulfilled.

Let us first show that (A3) implies that D0 is irreducible. We deduce from the second assertion of
Lemma 2.10 that (A3) is satisfied if and only if the only matrices in RL×Lsym which commute with D0

and all the Πx’s are the multiples of the identity matrix. When Nf = L, the matrices in RL×Lsym which
commute with all the Πx are the diagonal matrices. The diagonal matrices Λ = diag(λ1, · · · , λL) which
commute with D0 are the ones for which

∀1 ≤ i, j ≤ L, λi[D0]ij = [D0]ijλj .

If D0 was reducible, then one could find a permutation matrix P ∈ O(L) such that PD0P
−1 is a 2 × 2

block-diagonal matrix. The matrix Pdiag(1, · · · , 1, 2, · · · , 2)P−1, where the numbers of entries 1 and 2
match the sizes of the blocks of PD0P

−1, would then be a diagonal matrix which commutes with D0

and is not proportional to the identity matrix. We reach a contradiction. Thus, (A3) implies that D0 is
irreducible.
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Let us now show the equivalence

D0 is an irreducible matrix ⇐⇒ (A4) is satisfied.

We have for all Y ∈ Y,

‖RY ‖2 = Tr ((RY )(RY ))

=

Nf∑
x,x′=1

Tr
(

ΠxC
x
0L

+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
Cx0

TΠxΠx′C
x′

0 L+
x′

(
Cx
′

0

T
(
Y − ˜̀(Y )Πx′

)
Cx
′

0

)
Cx
′

0

T
Πx′

)

=

Nf∑
x=1

Tr
(

ΠxC
x
0L

+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
Cx0

TΠxC
x
0L

+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
Cx0

TΠx

)

=

Nf∑
x=1

Tr
(
pxL

+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
pxL

+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

))

=

Nf∑
x=1

‖pxL+
x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
px‖2.

Using (2.50) and (2.55)-(2.56), we obtain after straightforward algebraic manipulations that

(RY = 0) ⇐⇒
(
∀1 ≤ x ≤ Nf , pxL+

x

(
Cx0

T
(
Y − ˜̀(Y )Πx

)
Cx0

)
px = 0

)
⇐⇒

(
∀1 ≤ x ≤ Nf , (1−D0,x)1/2Ñx(Y )D

1/2
0,x +D

1/2
0,x Ñx(Y )T (1−D0,x)1/2 = 0

)
,

with

Ñx(Y ) := N
(

(1−D0,x)−1/2ETx (1−D0)Y D0ExD
−1/2
0,x − ˜̀(Y )D

1/2
0,x (1−D0,x)1/2

)
.

In the case when Nf = L, we have Lx = 1 for all x, and thus, D0,x and Ñ(Y ) are scalar quantities. We
then have in this special case by assumption (A2),

(RY = 0) ⇐⇒ (∀1 ≤ x ≤ Nf , Nx(Y ) = 0) ⇐⇒
(
My = ˜̀(Y )z

)
,

where y = (Y11, · · · , YLL)T ∈ RL, z = (D0,1(1 − D0,1), · · · , D0,L(1 − D0,L))T ∈ RL, and M ∈ RL×Lsym is
the matrix with entries

Mxx = [D0]xx − [D0]2xx, Mxx′ = −[D0]2xx′ if x 6= x′.

Still by Assumption (A2),
∑Nf
x=1 zx > 0, and therefore using the fact that D0 is an orthogonal projector

(hence that
∑Nf
x=1[D0]2x,x′ = [D2

0]xx = [D0]xx), we get

(My = ˜̀(Y )z) =⇒
(˜̀(Y ) =

∑Nf
x,x′=1Mx,x′yx′∑Nf

x=1 zx
=

∑Nf
x=1[D0]x,xyx −

∑Nf
x,x′=1[D0]2x,x′yx′∑Nf

x=1 zx
= 0

)
.

Therefore,

(RY = 0) ⇐⇒ (My = 0) .

The matrix M is hermitian, diagonal dominant with positive diagonal elements and non-positive off-
diagonal elements, and such that

∀1 ≤ x ≤ Nf , Mxx = −
∑
x′ 6=x

Mxx′ .

Therefore the kernel of M is reduced to R(1, · · · , 1)T if and only if M is irreducible. Besides, we see from
the expressions of the coefficients of M and Assumption (A2) that M is irreducible if and only if D0 is
irreducible. We conclude that R is injective, hence bijective, if and only if D0 is irreducible.
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2.7.7 Proof of Theorem 2.5

Perturbation expansion in the Fock space

This calculation is classical in the physics and chemistry literature, but we report it here for the sake of
completeness. Consider a family of Hamiltonians (Ĥα)α∈R of the form

Ĥα := Ĥ0 + α(Ŵ1 + Ŵ2)

on the real Fock space Fock(RNb) where

Ĥ0 :=

Nb∑
m,n=1

[h0]mnc
†
mcn and Ŵ1 :=

Nb∑
m,n=1

[W1]mnc
†
mcn

are one-body Hamiltonians and

Ŵ2 :=
1

2

Nb∑
m,n,p,q,=1

[W2]mnpqc
†
mc
†
ncqcp

is a two-body Hamiltonian.

Let us provisionally assume that h0 is diagonal, and more precisely that

h0 = diag(ε0
1, · · · , ε0

Nb
) with ε0

1 ≤ · · · ≤ ε0
N < 0 < ε0

N+1 ≤ · · · ε0
Nb
.

This amounts to working in a molecular orbital basis set of the unperturbed one-body Hamiltonian h0

and assuming that the Fermi level εF for having N particles in the ground state can be chosen equal to
zero. The ground state Ψ0 of H̃0 in the N -particle sector then is unique and so is the one of H̃α for α
small by perturbation theory. We have

Ψ0 =
1√
N !

c†N · · · c†1|0〉, E0 := 〈Ψ0|Ĥ0|Ψ0〉 =

N∑
i=1

ε0
i .

Denoting by d(α) the ground-state one-body reduced density matrix of Ĥα, the map α 7→ d(α) is real-
analytic in the neighborhood of 0 and

d(α) = d0 + αd1 +O(α2) with d0 :=

(
IN 0
0 0

)
.

In addition, we have
[d1]mn = 〈Ψ1|c†mcn|Ψ0〉+ 〈Ψ0|c†mcn|Ψ1〉,

where Ψ1 is the first-order perturbation of the ground-state wave-function Ψ0, solution to

(Ĥ0 − E0)Ψ1 = −ΠΨ⊥0

(
(Ŵ1 + Ŵ2)Ψ0

)
, Ψ1 ∈ Ψ⊥0 .

For 1 ≤ i1 < · · · < ir ≤ N (occupied orbitals) and m+ 1 ≤ a1 < · · · < ar ≤ Nb (virtual orbitals), we set

Φ0
0 := Ψ0 and Φa1···ar

i1···ir = c†ar · · · c†a1
ci1 · · · cirΦ0

0.

The Φa1···ar
i1···ir ’s (0 ≤ r ≤ min(N , Nb−N ), 1 ≤ i1 < · · · < ir ≤ N , a1 < · · · < ar ≤ Nb, form an orthonormal

basis of eigenfunctions of the restriction of Ĥ0 to the N -particle sector and it holds

Ĥ0Φa1···ar
i1···ir = Ea1···ar

i1···ir Φa1···ar
i1···ir with Ea1···ar

i1···ir = E0 +

r∑
s=1

εas −
r∑
s=1

εis .

We thus obtain the sum-over-state formula

Ψ1 = −
∑

1≤r≤min(N ,Nb−N )

∑
1≤i1<···<ir≤N

∑
N+1≤a1<···<ar≤Nb

〈Φa1···ar
i1···ir |Ŵ1 + Ŵ2|Φ0

0〉
Ea1···ar
i1···ir − E0

Φa1···ar
i1···ir ,
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yielding

[d1]mn = −
∑

1≤r≤min(N ,Nb−N )

∑
1≤i1<···<ir≤N

∑
N+1≤a1<···<ar≤Nb

〈Φa1···ar
i1···ir |Ŵ1 + Ŵ2|Φ0

0〉
Ea1···ar
i1···ir − E0

×
(
〈Φa1···ar

i1···ir |c
†
mcn|Φ0

0〉+ 〈Φ0
0|c†mcn|Φa1···ar

i1···ir 〉
)
.

Since 〈Φa1···ar
i1···ir |a†man|Φ0

0〉 = 0 if r ≥ 2, and

〈Φai |c†mcn|Φ0
0〉 = δn,iδm,a,

〈Φai |c†mc†ncqcp|Φ0
0〉 = −δm,qδn,iδp,aδq≤N + δm,pδn,iδq,aδp≤N + δm,iδn,qδp,aδq≤N − δm,iδn,pδq,aδp≤N ,

this expression reduces to

[d1]mn = −
N∑
i=1

Nb∑
a=N+1

〈Φai |Ŵ1 + Ŵ2|Φ0
0〉

ε0
a − ε0

i

(δn=iδm=a + δm=iδn=a) .

We obtain that d1 is of the form

d1 =

(
0 d+−

1

d+−
1

T
0

)
with ∀1 ≤ i ≤ N < N + 1 ≤ a ≤ Nb, [d1]ai =

〈Φai |Ŵ1 + Ŵ2|Φ0
0〉

ε0
a − ε0

i

.

Finally, we have

[d1]ai =

Nb∑
m,n=1

[W1]mn
〈Φai |c†mcn|Φ0

0〉
ε0
a − ε0

i

+

Nb∑
m,n,p,q=1

[W2]mnpq
〈Φai |c†mc†ncqcp|Φ0

0〉
ε0
a − ε0

i

=
[W1 + JW2

(d0)−KW2
(d0)]ai

ε0
a − ε0

i

,

where the direct and exchange operators are respectively given by

[JW2(d)]mn :=

Nb∑
p,q=1

[W2]npmqdpq and [KW2(d)]mn :=

Nb∑
p,q=1

[W2]npqmdpq.

Introducing the linear response operator L+
h0

such that

1(−∞,εF](h0 +W ) = 1(−∞,εF](h0 +W )︸ ︷︷ ︸
=d0

−L+
h0
W +O(‖W‖),

we finally obtain
d1 = −L+

h0
(W1 + JW2(d0)−KW2(d0)) , (2.77)

this formula remaining valid in the general case when h0 is not a priori diagonal and εF not a priori equal
to zero.

Perturbation expansion of the DMET ground-state

Under Assumption (A1), the Hartree-Fock problem

argmin
D∈D

EHF
α (D)

has a unique minimizer DHF(α) for α small enough and the map α 7→ DHF(α) is real-analytic in the
neighborhood of 0. This results from a straightforward application of nonlinear perturbation theory,
which we do not detail here for the sake of brevity. We set PHF(α) := Bd(DHF(α)), and

Dexact
1 :=

dDexact

dα
(0), DHF

1 :=
dDHF

dα
(0), DDMET

1 :=
dDDMET

dα
(0),

P exact
1 :=

dP exact

dα
(0), PHF

1 :=
dPHF

dα
(0), PDMET

1 :=
dPDMET

dα
(0).
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We are going to prove that the above first three matrices on the one hand, and the last three ones on the
other hand are equal in TD0

D and Y respectively.

First, we deduce from (2.77) applied with Nb = L, εF = 0, h0 = h, W1 = 0, W2 = v, that

Dexact
1 = −L+

h (J(D0)−K(D0)) ,

where J and K are the direct and exchange operators for the two-body interaction potential V̂ introduced
in (2.21).

Next, by differentiating the self-consistent equation

DHF(α) = 1(−∞,0]

(
hMF(α,DHF(α))

)
,

where
hMF(α,D) = h+ α (J(D)−K(D))

is the Fock Hamiltonian for the interaction parameter α, we get

DHF
1 = −L+

h (J(D0)−K(D0)) .

Hence
DHF

1 = Dexact
1 and PHF

1 = Bd(DHF
1 ) = Bd(Dexact

1 ) = P exact
1 .

Let us now show that PDMET
1 = PHF

1 . For convenience, we will use the following notation

FLL(α, P ) := FLL
α (P ), FHL(α,D) = FHL

α (D),

FHL
HF (α,D) :=

Nf∑
x=1

ΠxC
x(D)1(−∞,0]

(
Cx(D)T

(
hMF(α,D)− µHF(α,D)Πx

)
Cx(D)

)
Cx(D)TΠx,

where µHF(α,D) ∈ R is the Lagrange parameter of the charge conservation constraint. The map
FHL

HF (α,D) is the high-level Hartree-Fock map for the interacting parameter α, introduced in Remark 2.2
for α = 1.

We know from Theorem 2.4 that for all α small enough

FHL
(
α, FLL

(
α, PDMET(α)

))
= PDMET(α).

Taking the derivative at α = 0, we get

∂αF
HL(0, D0) + ∂DF

HL(0, D0)
(
∂αF

LL(0, P0) + ∂PF
LL(0, P0)PDMET

1

)
= PDMET

1 . (2.78)

The same arguments as in the proof of Proposition 2.1 allow one to show that for all α small enough

FHL
HF

(
α, FLL

(
α, PHF(α)

))
= PHF(α),

yielding

∂αF
HL
HF (0, D0) + ∂DF

HL
HF (0, D0)

(
∂αF

LL(0, P0) + ∂PF
LL(0, P0)PHF

1

)
= PHF

1 . (2.79)

Since FHL
HF (0, D) = FHL(0, D) for all D in the neighborhood of D0, we have

∂PF
HL
HF (0, D0) = ∂PF

HL(0, D0).

Using (2.67) and the invertibility of dPΦ(0, P0) established in Section 2.7.6, we obtain

PDMET
1 = − (dPΦ(0, P0))

−1 (
∂αF

HL(0, D0) + ∂DF
HL(0, D0)∂αF

LL(0, P0)
)
, (2.80)

PHF
1 = − (dPΦ(0, P0))

−1 (
∂αF

HL
HF (0, D0) + ∂DF

HL(0, D0)∂αF
LL(0, P0)

)
. (2.81)

Let us show that ∂αF
HL(0, D0) = ∂αF

HL
HF (0, D0). On the one hand, we have

FHL
HF (α,D0) =

Nf∑
x=1

ΠxC
x
0 1(−∞,0]

(
Cx0

T (h+ α (J(D0)−K(D0))− µHF(α,D0)Πx)Cx0

)
Cx0

TΠx,
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and therefore

∂αF
HL
HF (0, D0) = −

Nf∑
x=1

ΠxC
x
0L

+
x

(
Cx0

T (J(D0)−K(D0))Cx0 − ∂µHF(0, D0)px
)
Cx0

TΠx. (2.82)

On the other hand, we have

FHL(α,D0) =

Nf∑
x=1

ΠxC
x
0D

imp
x,D0

(α)Cx0
TΠx,

where Dimp
x,D0

(α) is the ground-state one-body reduced density matrix in the basis of Yx,D0
defined by Cx0

of the impurity Hamiltonian (see Proposition 2.7)

Ĥ imp
x,D0

(α) =

2Lx∑
i,j=1

[
Cx0

T (h+ α(J(Dx(D0))−K(Dx(D0))))Cx0

]
ij
âi(D0)†âj(D0)

+
α

2

2Lx∑
i,j,k,`=1

[V x(D0)]ijklâi(D0)†âj(D0)†â`(D0)âk(D0)

− µ(α)

2Lx∑
i,j=1

[
Cx0

TΠxC
x
0

]
ij
âi(D0)†âj(D0),

where µ(α) is the Lagrange multiplier of the charge neutrality constraint and where we have discarded the
irrelevant constant Eenv

x (D0). Using the notation introduced in (2.43), this Hamiltonian can be rewritten
as

Ĥ imp
x,D0

(α) =

2Lx∑
i,j=1

[hx]ij âi(D0)†âj(D0)

+ α

( 2Lx∑
i,j=1

[
Cx0

T (J(Dx(D0))−K(Dx(D0)))Cx0

]
ij
âi(D0)†âj(D0)

+
1

2

2Lx∑
i,j,k,`=1

[V x(D0)]ijklâi(D0)†âj(D0)†â`(D0)âk(D0)

)

− µ(α)

2Lx∑
i,j=1

[
Cx0

TΠxC
x
0

]
ij
âi(D0)†âj(D0).

We have

Dimp
x,D0

(0) =

(
ILx 0
0 0

)
.

Since µ(0) = 0 and α 7→ µ(α) is real-analytic, we can easily adapt the analysis done in the previous
section to the case when

Nb = 2Lx, h0 = hx, W1 = Cx0
T (J(Dx(D0))−K(Dx(D0))− µ′(0)Πx)Cx0 , W2 = V x(D0),

and infer that

Dimp
x,D0

(α) = Dimp
x,D0

(0)− L+
x

(
Cx0

T (J(Dx(D0))−K(Dx(D0))− µ′(0)Πx)Cx0

+ JV x(D0)(D
imp
x,D0

(0))−KV x(D0)(D
imp
x,D0

(0))

)
+O(α2),

where L+
x is the linear response operator introduced in (2.54). Observing that

Cx0
T (J(Dx(D0))−K(Dx(D0)))Cx0 +JV x(D0)(D

imp
x,D0

(0))−KV x(D0)(D
imp
x,D0

(0)) = Cx0
T (J(D0)−K(D0))Cx0 ,

we obtain that

∂αF
HL(0, D0) = −

Nf∑
x=1

ΠxC
x
0L

+
x

(
Cx0

T (J(D0)−K(D0))Cx0 − µ′(0)px
)
Cx0

TΠx. (2.83)
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Since the roles of the scalars ∂αµ(0, D0) in (2.82) and µ′(0) in (2.83) are simply to ensure charge neutrality,
these two scalars are the same. It follows that ∂αF

HL
HF (0, D0) = ∂αF

HL(0, D0), which allows us to deduce
from (2.80)-(2.81) that PDMET

1 = PHF
1 . Finally, we obtain that DDMET

1 = DHF
1 by differentiating the

relations
DDMET(α) = FLL(α, PDMET(α)) and DHF(α) = FLL(α, PHF(α)),

and using the fact that PDMET
1 = PHF

1 .
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Emmanuel Fromager, Lin Lin, and Solal Perrin-Roussel for useful discussions and comments. Part of this
work was done during the IPAM program Advancing quantum mechanics with mathematics and statistics.

78



Appendices

2.A Notation table

The following table collects the main notations in use in this article.

Symbol Meaning See Eq.
Fock(E) Fermionic Fock space associated with

the one-particle state space E ⊂ H
H = RL One-particle state space of the whole system, L its dimension (2.1)

Bat = (eκ)1≤κ≤L Canonical basis of H (2.1)

Ĥ Hamiltonian of the whole system (op. on Fock(H)) (2.2)

Ĥ0 Non-interacting Hamiltonian of the whole system (2.23)

Ĥα Hamiltonian of the whole system for coupling parameter α (2.22)
N Number of electrons in the system
D Set of 1-RDMs associated with N -particles Slater states (2.3)

(Grassmann manifold Gr(N,L))
CH(D) Convex hull of D (2.4)

(set of mixed-state 1-RDMs with N particles)

D0 N -particle round-state 1-RDM of Ĥ0 (2.24)

Dexact
α N -particle ground-state 1-RDM of Ĥα

DHF
α Hartree-Fock N -particle ground state 1-RDM of Ĥα

EHF Hartree-Fock energy functional (2.20)
J and K Coulomb and exchange energy functionals (2.21)
hHF(D) Mean-field (Fock) Hamiltonian (op. on H) (2.25)
Nf Number of fragments
Lx Number of sites in fragment x
Xx x-th fragment subspace, Xx = Span(eκ, κ ∈ Ix) ⊂ H (2.6)
Πx Orthogonal projector on Xx (op. on RL×Lsym )
Ex Matrix of the Lx orbitals of fragment x (Ex ∈ RL×Lx) (2.27)

Bd Projector defined by Bd(M) =
∑Nf
x=1 ΠXxMΠXx (op. on RL×Lsym ) (2.7)

P Convex set of block-diagonal matrices with eigenvalues in [0, 1] (2.8)
Y Space of traceless block-diagonal matrices Y ⊂ RL×Lsym (2.9)

Wx,D x-th impurity space, subspace of H, Wx,D = Xx +DXx ⊂ H (2.10)

Cx(D), C̃x(D) Matrices in RL×2Lx defining orthonormal bases of Wx,D (2.28), (2.29)

Ĥ imp
x,D x-th impurity Hamiltonian (op. on Fock(Wx,D)) (2.14), (2.30)

R 4-point DMET linear response function (op. on Y) (2.26), (2.75)

FLL, resp. FLL
α Low-level map for Ĥ, resp. Ĥα (2.19)

FHL, resp. FHL
α High-level map for Ĥ, resp. Ĥα (2.18), (2.66)

µ DMET global chemical potential

Table 2.A.1: Collection of the main notations used in the paper.
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2.B Analysis of the DMET bifurcation for H4−
6

We shall finally proceed with the analysis of the DMET solutions along the two bifurcation paths for
H4−

6 around Θ3 (see Section 2.4.2). To begin with, we calculate the molecular orbitals at Θ3. The
molecular orbital energies exhibit two-fold degeneracies resulting from the fact that the E′ and E′′ are
irreducible representations of the H4−

6 symmetry point group (D3h) are two-dimensional. For a visual
representation of the molecular orbital energies and their corresponding molecular orbitals, see Fig. 2.B.1a
and Fig. 2.B.1b.

Fermi-level

E′E′

-1.426

E′E′

-2.0119

-2.0478

A′1

(a) Occupied orbitals

-0.3634

A′2

E′E′

-0.5069

E′E′

-0.7604

-1.0275

A′1

-1.3045

A′2

Fermi-level

(b) Virtual orbitals

Figure 2.B.1: Depiction of the molecular orbitals, their irreducible representation with respect to the D3h

point group symmetry and molecular energies. The left panel shows the occupied molecular orbitals and
the right panel shows the virtual molecular orbitals.

For the two solutions on the respective bifurcation branches, P0 and P1, we compute

P0(Θ)− P1(Θ) = (Θ−Θ3)

[
0 Q+−

Q−+ 0

]
+ o(Θ−Θ3), (2.84)

where Q−+ = Q>+− ∈ R7×5. From the matrix Q−+ we deduce “excitation” patterns that give physical
insight into the different branches. The numerical values of Q−+ are given by

Q−+ =



0 0 0 0 0
−0.0004 0 0 0 0

0 0.0001 0 0.0002 0
0 0 −0.0001 0 −0.0002
0 0.0001 0 0.0001 0
0 0 −0.0001 0 −0.0001
0 0 0 0 0


(2.85)

Upon inspecting Q−+, we observe the following “excitation” pattern: The first molecular orbital (A1’
symmetry) is rotated in the direction of the seventh molecular orbital (A1’ symmetry), while the 4-
dimensional space generated by the second to fifth molecular orbitals (E′ symmetry) is tilted according
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to directions which are linear combinations of the eighth to eleventh molecular orbitals (E′ symmetry).
We summarize this “excitation” pattern in Fig. 2.B.2
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-0.7604 -0.7604

-1.0275

-1.3045

-1.426 -1.426

-2.0119 -2.0119

-2.0478

Fermi-level

Figure 2.B.2: Molecular energies and “excitation” patterns concluded from Q−+

We see that the pair of degenerate occupied orbitals are excited into the pair of degenerate virtual
orbitals. This block of excitations is highlighted by the red shaded area in Fig. 2.B.2 . A more detailed
depiction of the excitations between the red-shaded areas is given in Fig. 2.B.3.
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Figure 2.B.3: Excitation patterns concluded from Q−+ for symmetric and anti-symmetric molecular
orbitals respectively.

This shows that the excitations remain in the respective symmetry sectors, i.e., the symmetric/anti-
symmetric molecular orbitals are excited into the set of the symmetric/anti-symmetric molecular orbitals.
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To further understand the structure that underlies these excitations we compute the singular value
decomposition of Q−+ = UΣV >. This yields insights into excitations of the form:

Ū =

[
0
U

]
Σ−→
[
V
0

]
= V̄ , (2.86)

where Ū and V̄ describe the natural excitation orbitals and Σ describes the excitation amplitudes. For
the given Q−+ we find the singular values

0.0003866, 0.0002313, 0.0002313, 0, 0.

This unveils a twofold degeneracy in excitation, implying that a two-dimensional subspace of natural
excitation orbitals undergoes excitation into another two-dimensional orbital space. We may moreover
depict the different natural orbitals by plotting iso-surfaces in Fig. 2.B.4. The top row of orbitals in
Fig. 2.B.4 corresponds to the natural orbitals defined via Ū , and the second row of orbitals is defined
through V̄ . Note that we only depict those orbitals that are involved in non-zero orbital excitations, i.e.,
non-zero singular values of Σ.

0.0003866 0.0002313

Figure 2.B.4: Schematic depiction of the excitation between the natural excitation orbitals. The excita-
tions are labeled by the excitation amplitudes.
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Chapter 3

A mathematical analysis of
IPT-DMFT.

In this chapter, we provide a mathematical and numerical analysis of the IPT-DMFT equations. This
part is joint work with Éric Cancès, Solal Perrin-Roussel.

Abstract We provide a mathematical analysis of the Dynamical Mean-Field Theory (DMFT), a cele-
brated representative of a class of approximations in quantum mechanics known as embedding methods.
We start by a pedagogical and self-contained mathematical formulation of the DMFT equations for the
finite Hubbard model. After recalling the definition and properties of one-body time-ordered Green’s
functions and self-energies, and the mathematical structure of the Hubbard and Anderson impurity mod-
els, we describe a specific impurity solver, namely the Iterated Perturbation Theory (IPT) solver, which
can be conveniently formulated using Matsubara’s Green’s functions. Within this framework, we prove
under certain assumptions that the DMFT equations admit a solution for any set of physical parameters.
Moreover, we establish some properties of the solution(s).
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3.1 Introduction

The Dynamical Mean-Field Theory (DMFT) is an approximation method for the fermionic quantum
many-body problem. It was introduced by Georges and Kotliar in 1992 and first applied to the case
of the Hubbard model [51, 22]. It has since been extended to other settings [59] and coupled with
Density Functional Theory (DFT) within the so-called DFT+DMFT method [27]. The latter is one
of the reference methods for first-principle computations of electronic structures of strongly correlated
materials. DMFT belongs to the class of quantum embedding methods, and has since been joined by
many other methods such as Density-Matrix Embedding Theory (DMET) [32], Rotationally-Invariant
Slave Boson (RISB) method [35], Energy-weighted DMET [18], Quantum Embedding Theory [42], and
related methods.

At the time of writing, the mathematical analysis of quantum embedding methods is very limited.
The rigorous results we are aware of are those on DMFT contained in Lindsey’s PhD thesis [41], the ones
on DMET recently obtained by the first two authors and their collaborators [14], and a few others with
a numerically oriented approach such as [16, 66].

The purpose of this article is to establish a rigorous mathematical formulation of the DMFT equations
and to prove, in particular, the existence of a solution to the DMFT equations for the Hubbard model
within the Iterated Perturbation Theory (IPT) approximation [22]. This relies on the extension of some
results from [41, Part VII] and is based upon a reformulation of the DMFT equations as a fixed-point
problem in the space of probability measures on the real line.

In the language of linear algebra, solving the fermionic quantum many-body problem consists in
computing some spectral properties of a Hermitian matrix Ĥ ∈ CM×M , the Hamiltonian of the system,
such as its ground-state energy (i.e. its lowest eigenvalue), or the partition function

Zβ,εF := exp
(
−β(Ĥ − εF N̂)

)
,

where β = 1
kBT

is the inverse temperature, εF ∈ R is the chemical potential, and N̂ is the number

operator, as well as derivatives of Zβ,εF with respect to β, εF or parameters of Ĥ.

The difficulty is that the size M of the matrix Ĥ can be huge (up to 1030 or more in some applica-
tions). Fortunately, the Hamiltonian Ĥ has specific properties, allowing one to use taylored methods.
Indeed, in most applications, Ĥ is the matrix of a Hamiltonian operator acting on a fermionic Fock
space F , containing only one- and two-body terms, and satisfying symmetry properties (particle number
conservation, spin, and possibly space, isospin, or time-reversal symmetries). Identifying the one-body
state space H with C2L, it holds M = 22L and

F =

L⊕
N=0

HN ,

where the N -particle sector HN =
∧N H of the Fock space is of dimension

(
2L
N

)
. In this decomposition,

N̂ is a block diagonal operator, the block corresponding toHN being equal to N times the identity matrix.
If Ĥ is particle-number conserving, then it is also block-diagonal in this decomposition (equivalently Ĥ
and N̂ commute). If it only contains one- and two-body terms, then Ĥ has a compact representation in
the second quantization formalism involving a Hermitian matrix H0 ∈ C2L×2L and a fourth-order tensor
V ∈ C2L×2L×2L×2L. Spin, space, isospin, or time-reversal symmetries allow one to further reduce the
complexity of the representation of Ĥ and refine its block diagonal structure. Still, solving the quantum
many-body problem remains extremely challenging.

Quantum embedding methods can be seen as domain decomposition methods in the Fock space, using
a partition of the L “sites” (also called orbitals) of the model into P non-overlapping clusters (Λp)1≤p≤P
of cardinalities Lp := |Λp|. Without loss of generality, we can assume that the first cluster consists of the
first L1 orbitals, the second cluster of the next L2 orbitals, and so on. To each cluster is associated an
impurity model, a quantum many-body problem set on the Lp sites of the cluster, as well as on virtual sites
called bath orbitals. In DMET, the number of bath orbitals is exactly equal to Lp so that the impurity
quantum many-body problem is of size Mp := 24Lp . In practice, DMET impurity problems are solved
either by brute-force diagonalization (full CI) if Lp is not too large, or by low-rank tensor methods (e.g.
Density Matrix Renormalization Group, DMRG [64]). In DMFT, the impurity problem can be much
larger, but the impurity Hamiltonian has the relatively simple form of an Anderson Impurity Model
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(AIM): within each of the P impurity models, bath orbitals do not contribute to two-body interactions,
and only interact with cluster orbitals via one-body interactions. It can be shown that the AIM associated
with the p-th cluster can be completely described by the restrition of Ĥ to the p-th cluster’s orbitals and
a hybridization function ∆p : C \R→ CLp×Lp . AIMs are usually solved in practice either by a quantum
Monte Carlo method [52], or by an approximate solver such as the IPT (Iterative Perturbation Theory)
solver [22] considered in this article. The IPT solver was introduced in the seminal paper [68], and is still
used to study very challenging systems such as moiré heterobilayers [60].

Quantum embedding methods are self-consistent theories: the P impurity problems are coupled
through a mean-field defined on the whole quantum system with L orbitals.

In DMET, the role of the mean-field is played by an approximation D ∈ C2L×2L of the ground-
state one-body density matrix (1-RDM) of the system. The matrix D allows one to define an impurity
problem for each cluster, and the self-consistent condition is that for each cluster p, the diagonal block
of D corresponding to this cluster agrees with the restriction of the exact ground-state 1-RDM of the
p-th impurity problem to the cluster p. It is expected that at self-consistence the diagonal blocks of D
corresponding to the cluster decomposition are good approximations of the diagonal blocks of the exact
ground-state 1-RDM of the whole system [14].

In DMFT, the role of the mean-field is played by an approximation G of the exact one-body Green’s
function [43] associated with some equilibrium state, usually the ground-state of Ĥ in the N -particle
sector, or a canonical or grand-canonical thermodynamical equilibrium state. One-body Green’s functions
can be represented by analytic functions G : C \ R → C2L×2L and are thus computationally tractable
objets for values of L up to a few thousands. The function G is a particular holomorphic extension of the
Fourier transform of the time-ordered Green’s function. Loosely speaking, the latter is an equilibrium
time-correlation function obtained by creating (resp. annihilating) a particle at time t0 = 0 (resp. at
t < 0), letting the system evolve from t0 to t (resp. from t to t0), and annihilating the extra particle
(resp. restoring the missing particle) at time t (resp. at time t0). The exact one-body Green’s function
contains a lot of valuable information about the quantum system under investigation. In particular, the
1-RDM of the equilibrium state, hence the expectation value of any one-body observable, can be easily
extracted from it. The same holds true for the average energy, thanks to Galitski-Migdal’s formula [24, 43].
Also, the poles of the analytic continuation of G to the real-axis correspond to the one-particle excitation
energies measured in photoemission and inverse-photoemission spectroscopies [69]. Remarkably, the exact
Green’s function G0 of a non-interacting system, i.e. of a many-body Hamiltonian which is the second
quantization of a one-body hamiltonian dΓ(H0) is simply the resolvent of H0: G0(z) = (z − H0)−1,
whatever the reference equilibrium state. The self-energy of an interacting system with Hamiltonian
Ĥ = dΓ(H0) + ĤI , where ĤI accounts for the two-body interactions, is the function Σ : C\R→ C2L×2L

defined by
Σ(z) = G0(z)−1 −G(z)−1 or equivalently G(z) = (z −H0 − Σ(z))−1. (3.1)

DMFT consists in

� approximating the exact self-energy of the whole system by a block diagonal self-energy Σ =
block-diag(Σ1, . . . ,ΣP ), with Σp : C \ R → C2Lp×2Lp compatible with the cluster decomposition.
This condition is sometimes called the DMFT approximation;

� imposing the self-consistent conditions that for each cluster

– the self-energy Σp agrees with the restriction to the cluster of the exact self-energy of the
associated AIM.

– the restriction to the cluster of the approximate Green’s function of the whole system agrees
with the restriction to the cluster of the exact Green’s function of the AIM. This condition is
often referred to as the self-consistent condition.

In practice, the DMFT equations are solved by fixed-point iterations. The input of iteration n is a col-

lection of P hybridization functions (∆
(n)
p )1≤p≤P . At step 1, the P AIM problems with hybridization

functions ∆
(n)
p are solved in parallel, in order to compute P cluster self-energies Σ

(n)
p , yielding an approx-

imation Σ(n) = block-diag(Σ
(n)
1 , · · ·Σ(n)

P ) of the self-energy of the whole system. At step 2, the above

two self-consistent conditions are combined yielding a new set (∆
(n+1)
p )1≤p≤P of hybridization functions.

The DMFT iteration scheme can therefore be sketched as

∆(n) := (∆(n)
p )1≤p≤P

fAIM

−→ Σ(n) := (Σ(n)
p )1≤p≤P

fSC

−→∆(n+1) := (∆(n+1)
p )1≤p≤P ,
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or written in the more compact form

∆(n+1) = fDMFT
(

∆(n)
)
. (3.2)

Of course, this basic self-consistent loop can be stabilized and accelerated using e.g. damping and
Anderson-Pulay extrapolation methods. In this article, we forego an in-depth analysis of the iterative
scheme and its convergence, opting instead to direct our attention towards a fundamental inquiry: the
existence of solutions within the DMFT equations. Specifically, we address the question of the existence of
a fixed-point of the DMFT map fDMFT, a critical aspect which, to our knowledge remains unestablished
in the current literature.

This article is organized as follows. In Section 3.2, we provide a mathematical introduction to DMFT
for the Hubbard model aimed at being accessible to readers unfamiliar with this theory. The Hubbard
model provides insights into the behavior of electrons in strongly correlated systems. Its integration within
the DMFT framework offers a powerful tool for understanding the interplay between electron-electron
interactions in finite structures (truncation of a lattice for instance), shedding light on phenomena such
as metal-insulator transitions and high-temperature superconductivity. We recall the basics of second
quantization formalism, the formulation of the Hubbard and Anderson impurity models, the definitions of
one-body Green’s functions, self-energies, and hybridization functions, and the precise formulation of the
DMFT equations. In Section 3.3, we state our main results. They are based on the observation that the
key mathematical objects involved in DMFT (exact and approximate one-body Green’s functions and self-
energies, hybridization functions) are all negatives of Pick functions. Recall that scalar Pick functions are
analytic functions from the open upper-half plane to the closed upper-half plane [45], [49]. An interesting
property of scalar Pick functions, which we use extensively in our analysis, is that any Pick function admits
an integral reprentation involving a positive Borel measure on R, called its Nevanlinna-Riesz measure [45].
Analogous properties hold true for matrix-valued Pick functions [23]. For the Hubbard model with a finite
number of sites, the exact Green’s function and self-energy can be extended to meromorphic functions
on C with finite numbers of poles, and are therefore represented by discrete Nevanlinna-Riesz measures
with finite support. We then focus on the paramagnetic single-site translation invariant IPT-DMFT
approximation of the Hubbard model, for which P = L and L1 = · · · = LP = 1. We show that these
equations have no solutions in the class of (negatives of) Pick functions with discrete Nevanlinna-Riesz
measures of finite support, but do have solutions in the set of (negatives of) Pick functions. More precisely,
equation (3.2) has a translation invariant fixed point (∆, . . . ,∆), ∆ being the negative of a Pick function
whose Nevanlinna-Riesz measure has the form cν, where c ∈ R+ is a fixed constant only depending on
the matrix H0, and ν a Borel probability measure on R. To obtain the latter result, we show that the
IPT-DMFT iteration map fDMFT in (3.2) can be rewritten as a map FDMFT : P(R) → P(R), which
is continuous for the weak topology. We conclude by checking that the Schauder-Singbal’s fixed-point
theorem [57] can be applied to this setting.

3.2 DMFT of the Hubbard model

We provide in this section a mathematical description of the models and quantities of interest involved in
Dynamical Mean-Field Theory (DMFT) for the Hubbard model. We first recall the definitions of one-body
Green’s functions and the self-energy. We then introduce the Hubbard model and the Anderson Impurity
Model (AIM). Next, we derive the DMFT equations and finally present the Iterated Perturbation Theory
(IPT) solver, which is the approximate impurity solver considered in this work.

3.2.1 One-body Green’s functions and the self-energy

One-body Green’s functions are key objects in DMFT. To avoid technicalities, we will define Green’s
functions in a finite-dimensional setting and assume that the one-body state space is a finite-dimensional
Hilbert space (H, 〈·, ·〉), dim(H) = 2L ∈ N∗. We refer to e.g. [13] for a mathematical introduction to
Green’s functions in an infinite-dimensional setting. The associated Fock space

F =

2L⊕
n=0

n∧
H,

where the n-particle sector

n∧
H is the anti-symmetrized tensor product of n copies of H, is then of

dimension 22L. Given a one-particle state φ ∈ H, we denote by âφ (resp. â†φ) the usual annihilation
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(resp. creation) operator defined on F (see e.g. [12]), which satisfy the Canonical Anti-commutation
Relations (CAR):

∀φ, φ′ ∈ H, {âφ, âφ′} = {â†φ, â
†
φ} = 0, {âφ, â†φ′} = 〈φ, φ′〉

where {Ô, Ô′} = ÔÔ′ + Ô′Ô is the anti-commutator of the two operators Ô, Ô′ ∈ L(F).

Equilibrium states. A state Ω is a linear form on the set of operators L(F), which is positive
(Ω(Ô†Ô) ≥ 0) and normalized (i.e. sup{|Ω(Ô)|, ‖Ô‖ = 1} = 1). In the finite-dimensional case, any
state Ω can be represented by a unique self-adjoint operator ρ̂ ∈ S(F) such that for all Ô ∈ L(F),
Ω(Ô) = Tr(ρ̂Ô). The operator ρ̂ is positive and satisfies Tr(ρ̂) = 1. It is called the density operator
associated to the state Ω. For an isolated quantum system described by a time-independent Hamiltonian
Ĥ ∈ S(F), an equilibrium state corresponds to a stationary solution to the quantum Liouville equation

i
dρ̂

dt
(t) = [Ĥ, ρ̂(t)],

where [Ô, Ô′] = ÔÔ′ − Ô′Ô is the commutator of Ô, Ô′ ∈ L(F). It follows that a state is an equilibrium
state if and only if its density ρ̂ commutes with the Hamiltonian Ĥ, namely [Ĥ, ρ̂] = 0. Important
examples of equilibrium states are thermal and osmotic equilibrium states known as Gibbs states, as well
as ground and excited states of Ĥ with a prescribed number of particles (for particle-number conserving
Hamiltonians).

One-body Green’s functions. The one-body time-ordered Green’s functions are then defined as fol-
lows:

Definition 3.2.1 (One-body time-ordered Green’s function). Given a Hamiltonian Ĥ ∈ S(F) and an
associated equilibrium state Ω, one defines the L(H)-valued function G̃ : R→ L(H), known as one-body
time-ordered Green’s function, so that iG̃(t) is the operator represented by the sesquilinear form

〈φ, (iG̃(t))φ′〉 = χR+
(t) Ω(H(âφ)(t)â†φ′)− χR∗−(t) Ω(â†φ′H(âφ)(t)) (3.3)

where for all Ô ∈ L(F),H(Ô) : R 3 t 7→ eitĤÔe−itĤ is the Heisenberg picture of Ô and χA is the
characteristic function of the set A.

Let us comment on the terminology. First, the term “body” encompasses “particle” and “hole”: the
first term of the right hand side of (3.3) can be interpreted as describing the propagation from t0 = 0
to t > 0 of a particle added to the system at t0 = 0, while the second term can be interpreted as the
propagation from t < 0 to t0 = 0 of a hole created at t < 0. Second, it is “time-ordered”: the r.h.s. of
(3.3) can be rewritten as

Ω
(
T
(
H(âφ),H(â†φ′)

)
(t, 0)

)
where for all operators-valued functions R 3 t 7→ Ô(t) ∈ L(F),R 3 t 7→ Ô′(t) ∈ L(F), the fermionic
time-ordered product T (Ô, Ô′) is the operator-valued function R2 → L(F) defined as

T (Ô, Ô′)(t, t′) =

{
Ô(t)Ô′(t′) if t ≥ t’

−Ô′(t′)Ô(t) otherwise,

where the minus sign is specific to the fermionic case. Up to a sign, it is the product of the operators
applied in the order of increasing time.

The i prefactor in the left hand side of (3.3) is a convention that facilitates the expression of the
results to come, especially Proposition 3.2.3.

Finally, note that G̃ is real-analytic on (−∞, 0)∪ (0,+∞) with a −i1 jump at t = 0 due to the CAR.
As F is finite-dimensional, the Green’s function can be expanded in a joint orthonormal eigenbasis B

of ρ̂ and Ĥ, leading to the Källén-Lehmann (KL) representation [34, 36]

∀φ, φ′ ∈ H, 〈φ, iG̃(t)φ′〉 =
∑

ψ,ψ′∈B

eit(Eψ−Eψ′ )〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉
(
ρψχR+(t)− ρψ′χR∗−(t)

)
, (3.4)

where ∀ψ ∈ B, Ĥψ = Eψψ (with Eψ ∈ R) and ρ̂ψ = ρψψ (with ρψ ∈ R+,
∑
ψ∈B ρψ = 1).
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Other types of Green’s functions are encountered in the physics literature, notably retarded/advanced
Green’s functions. These objects encode the same information on the spectral properties of Ĥ as the
time-ordered Green’s function, but this information is stored in a different way. A suitable way to
highlight this information is to consider specific holomorphic extensions to the complex plane of the
time-Fourier transform of these Green’s functions [43, 13]. In the case of the time-ordered one-body
Green’s function, the suitable holomorphic extension is provided by the generalized Fourier transform
introduced by Titchmarsh [61].

Definition 3.2.2 (Generalized Fourier Transform (GFT)). The Generalized Fourier Transform (GFT)
of the one-body time-ordered Green’s function G̃ is the analytic function on the upper-half plane G : C+ →
L(H), also called a (one-body) Green’s function, defined by

∀z ∈ C+, G(z) = G+(z) +G−(z)† (3.5)

with

∀z ∈ C+ := {z ∈ C | =(z) > 0}, G+(z) =

∫
R+

eiztG̃(t)dt,

∀z ∈ C− := {z ∈ C | =(z) < 0}, G−(z) =

∫
R−

eiztG̃(t)dt.

Note that the Green’s function G can be extended to C \ R by reflection, namely by setting

∀z ∈ C−, G(z) = G(z̄)†. (3.6)

By construction, G(z) is analytic on C+. In addition, it follows from the KL representation (3.4) that

∀z ∈ C+, ∀φ, φ′ ∈ H, 〈φ,G(z)φ′〉 =
∑

ψ,ψ′∈B

ρψ + ρψ′

z + (Eψ − Eψ′)
〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉. (3.7)

An important observation is that

∀z ∈ C+, ∀φ ∈ H \ {0}, = (〈φ,G(z)φ〉) = −=(z)
∑

ψ,ψ′∈B

ρψ′ + ρψ
|z + (Eψ − Eψ′)|2

|〈ψ, âφψ′〉|2 < 0, (3.8)

which shows in particular that G(z) is invertible for all z ∈ C+.
Up to now, we have not specified the Hamiltonian Ĥ; in the sequel, we will assume that it is of the

form
Ĥ = dΓ(H0) + ĤI , H0 ∈ S(H), ĤI ∈ S(F) (3.9)

where dΓ(H0) is the second quantization of the one-particle Hamiltonian H0 ∈ S(H) (see e.g. [12]) and
ĤI ∈ S(F) some interaction Hamiltonian. We say that Ĥ is non-interacting if ĤI = 0.

Depending on the formalism of interest, one can consider the grand canonical Hamiltonian Ĥ ′ =
Ĥ − εF N̂ without loss of generality.

The following is an essential property of the Green’s function, to which it owes its name: the Green’s
function of a non-interacting system in an equilibrium state is the resolvent of the one-particle Hamilto-
nian.

Proposition 3.2.3 (Non-interacting Green’s function). Let H0 ∈ S(H) be a one-particle Hamiltonian
and Ω an equilibrium state of the non-interacting Hamiltonian dΓ(H0). The Green’s function G0 of
dΓ(H0) associated to Ω is the resolvent of H0:

∀z ∈ C+, G0(z) = (z −H0)−1. (3.10)

In particular, G0 is independent of Ω.

The proof of this classical result is recalled in Section 3.4.1. It is a consequence of the fact that the
one-body Green’s function G̃0 of the non-interacting Hamiltonian dΓ(H0) is solution to the equation(

i
d

dt
−H0

)
G̃ = δ1 in D′(R;L(H)) (3.11)

so that the time-ordered Green’s function G̃0 is indeed a Green’s function of the linear differential operator
i ddt −H0. The various avatars of the Green’s function (retarded/advanced) also satisfy this equation in
D′(R∗;L(H)), but with different boundary conditions at infinity and jumps at t = 0. The properties
(3.10)-(3.11) hold only for non-interacting Hamiltonians.
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Self-energy. For interacting systems, the general relation between the Hamiltonian and the Green’s
function is more involved: the discrepancy with the non-interacting case is characterized by the self-
energy.

Definition 3.2.4 (Self-energy). The self-energy Σ : C+ → L(H) of an Hamiltonian Ĥ of the form (3.9)
associated to an equilibrium state Ω of Ĥ is defined by

∀z ∈ C+, Σ(z) = G0(z)−1 −G(z)−1, (3.12)

where the non-interacting Green’s function G0 is the Green’s function of any equilibrium state of dΓ(H0).

Recall that G0(z)−1 = z −H0 (3.10) and that G(z) is invertible in view of (3.8). Let us emphasize
that the definition of the self-energy only depends on Ĥ, H0, and the considered equilibrium state Ω of
Ĥ, since G0 is independent of the equilibrium state associated to dΓ(H0).

Using again (3.10) and the definition of the self-energy, the Green’s function G can be rewritten as

∀z ∈ C+, G(z) =
(
z − (H0 + Σ(z))

)−1

so that, for a given complex frequency z, H0 + Σ(z) can be considered as an effective one-particle
Hamiltonian (compare with (3.10)): the self-energy is thus the extra term to be added to H0 to obtain
a representation of the interacting system of particles in terms of a system of non-interacting ones. The
frequency dependence of Σ comes from the fact that particles do interact in the original system.

3.2.2 Hubbard model

Originally introduced in quantum chemistry [48, 50], the Hubbard model [31, 29, 26] is an idealized
model that minimally describes interacting electrons in a molecule or a crystalline material. From the
mathematical physics’ perspective, it is a prototypical example of short-range fermionic lattice system,
and its mathematical study has been pioneered soon after its introduction in [38, 39], triggering an
extensive study of its ground-states properties [37]. More recently, the discovery of cuprate-based high-
temperature superconductors [8, 67], exhibiting a layered structure, shed new light on the square lattice
Hubbard model, for which much remains to be discovered [37]. Since then, approximation methods have
been derived for this model such as generalized Hartree-Fock [6], and Dynamical Mean-Field Theory [22].

In this article, we restrict ourselves to finite-dimensional Hubbard models, i.e. to Hubbard models
defined on finite graphs. The reason for this is threefold. First, we stick to the case of finite-dimensional
state spaces, for which all the objects involved in the mathematical formulation of DMFT are well-defined.
Second, graph theory provides a suitable formalism to describe on the same footing different physical
settings, ranging from molecular systems to truncated lattices, and with arbitrary hopping parameters
(nearest neighbours, next nearest neighbors, ...). Third, this is precisely the language in which DMFT
can be formulated concisely, as described in Section 3.2.4.

↑↓
U

↑

↓

↑

↓

T

(a) The Pariser-Parr-Pople model of benzene
C6H6: the cyclic graph C6.

(b) A truncated lattice Z2/6Z with nearest
neighbors : the square grid graph P�2

6 .

Figure 1: The Hubbard model for different graphs

Consider now a finite undirected graph GH = (Λ, E) that describes the “sites” Λ hosting electrons, as
depicted in Figure 1. The state space of a site is the vector space spanned by the orthonormal vectors |∅〉

93



(empty site), | ↑〉 (site occupied by one spin-up electron), | ↓〉 (site occupied by one spin-down electron),
and |↑↓〉 (doubly-occupied site). Note that |↑↓〉 is a shorthand notation for the two-electron singlet state
2−1/2(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉). In chemistry language, to each site is associated a single orbital (and thus
two spin-orbitals); in physics, this setting is referred to as the one-band Hubbard model. Since the sites
are distinguishable, the state space of the full system is the tensor product of the state space of each site.
It is therefore of dimension 4|Λ| = 22L where L = |Λ| is the number of sites.

Let us now specify the Hamiltonian. In the Hubbard model, electrons can jump from one site to any
other neighboring site. This models the tunnel effect, whose intensity is described by the hopping matrix
T, as for tight-binding Hamiltonians. Electrons repel each other due to (screened) Coulomb interaction.
The simplicity of the Hubbard model lies in the range of this interaction, which is the shortest possible:
it is only effective for two electrons occupying the same site, and if the site i is doubly occupied, the
energy of the system is increased by an on-site repulsion Ui.

More precisely, a finite-dimensional Hubbard model can be defined as follow.

Definition 3.2.5 (Hubbard model of a finite graph). Given a finite graph GH = (Λ, E), a hopping matrix
T : E → R, and an on-site repulsion U : Λ→ R, the Hubbard Fock Space FH is defined as

FH =
⊗
i∈Λ

F1, F1 = Span(|∅〉, |↑〉, |↓〉, |↑↓〉)

and the Hubbard Hamiltonian ĤH ∈ S(FH) as

ĤH =
∑

{i,j}∈E,σ∈{↑,↓}

Ti,j

(
â†i,σâj,σ + â†j,σâi,σ

)
+
∑
i∈Λ

Uin̂i,↑n̂i,↓

where the usual annihilation and creation operators âi,σ and â†i,σ of an electron on site j with spin σ
satisfy the CAR

∀i, j ∈ Λ, σ ∈ {↑, ↓}, {âi,σ, âj,σ′} = {â†i,σ, â†j,σ′} = 0, {âi,σ, â†j,σ′} = δi,jδσ,σ′ , (3.13)

and the site number operators n̂i,σ are defined by n̂i,σ = â†i,σâi,σ.

In this paper, we do not consider external magnetic field, so that we can assume without loss of
generality that the hopping matrix T is real-valued [37]. For standard Coulomb interaction, the on-site
repulsion U is positive, but we do not need to make this assumption here.

Remark 3.2.6. The Hubbard Hamiltonian ĤH is particle-number and spin conserving, i.e. it commutes
with the number operator N̂H =

∑
i∈Λ (n̂i,↑ + n̂i,↓) and the spin operators. In particular, it commutes

with the z-component ŜzH = 1
2

∑
i∈Λ (n̂i,↑ − n̂i,↓) of the spin operator. This property will be used later to

make the IPT-DMFT model spin-independent.

3.2.3 Anderson Impurity Model (AIM)

Impurity models Impurity models are models in which an “impurity” is coupled to a “bath” in such
a way that particles in the bath do not interact, and the coupling Hamiltonian between the impurity and
the bath only involves one-body terms. Otherwise stated, the one-particle state space and the Fock space
of the total system can be decomposed as

HIM = Himp ⊕Hbath and FIM = Fimp ⊗Fbath, (3.14)

and its Hamiltonian as

ĤIM = Ĥimp ⊗ 1bath + 1imp ⊗ Ĥbath + Ĥcoupling, (3.15)

with

Ĥimp = dΓ(H0
imp) + ĤI

imp, Ĥbath = dΓ(H0
bath), Ĥcoupling = dΓ(H0

coupling), (3.16)

and H0
coupling can be decomposed according to (3.14) as

H0
coupling =

(
0 V
V † 0

)
.
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Reshuffling the terms, we also have

ĤIM = dΓ(H0
IM) + ĤI

imp ⊗ 1bath, with H0
IM =

(
H0

imp V

V † H0
bath

)
. (3.17)

As will be seen below, a key step of the DMFT iteration loop is to compute the restriction of the
Green’s function GIM of an impurity model to the impurity space Himp. This is in general a difficult
task. On the other hand, computing the restriction of the non-interacting Green’s function can easily be
done using a Schur complement technique. This leads to the concept of hybridization function, which, as
announced in the introduction, is of paramount importance in the mathematical formulation of DMFT.

Definition 3.2.7 (Hybridization function ∆ of an impurity model). Given an impurity model of the
form (3.14)-(3.17), its hybridization function ∆ : C+ → L(Himp) is defined by

∀z ∈ C+, ∆(z) = V
(
z −H0

bath

)−1
V †. (3.18)

Using this definition and Proposition 3.2.3, the non-interacting Green’s function of the impurity model
is then given in the decomposition (3.14) by

G0(z) = (z −H0
IM)−1 =

(
(z −H0

imp −∆(z))−1 ∗
∗ ∗

)
.

The hybridization function ∆ thus plays a role analogous to the self-energy Σ. The equation(
G0(z)

)
imp

=
(
z − (H0

imp + ∆(z))
)−1

means that H0
imp + ∆(z) can be considered as an effective one-particle impurity Hamiltonian: the hy-

bridization function is the extra term to be added to H0
imp so that, in the non-interacting case, a particle

in the whole system can be regarded as a particle localized on the impurity. In the time domain, the
hybridization function describes the phenomenon of a particle localized on the impurity, jumping into
the bath, and jumping back to the impurity, hence the name hybridization.

The most important result in this section is the following.

Theorem 3.2.8 (Σ sparsity pattern of an impurity model). Given an impurity model of the form (3.14)-
(3.17), the self-energy ΣIM : C+ → HIM associated to any equilibrium state of ĤIM reads in the decom-
position (3.14)

∀z ∈ C+, ΣIM(z) =

(
Σimp(z) 0

0 0

)
. (3.19)

In practical DMFT computations and as mentioned already in [19], the self-energy Σ of an impurity
problem depends solely on the hybridization function ∆ and on the impurity Hamiltonian defined by
H0

imp and ĤI , via a quantum action defined by path integrals [25, eq. 9]. In this article, we focus on the
IPT approximation (see section 3.2.5), which makes this dependence almost explicit, and postpone the
study of the exact impurity solver in a more general framework to future works.

Anderson Impurity Model The original Anderson impurity model (AIM) [4] is a specific impurity
model in which the impurity consists of a single-site Hubbard model. It was introduced by Anderson
back in 1961 to explain the low-temperature behavior of the conductivity of metallic alloys with dilute
magnetic impurities, later called the Kondo effect [33, 54]. The AIM was then extended to multiple-site
Hubbard impurities. Figure 2 provides a graphical illustration of an AIM model with a 4-site Hubbard
impurity and 5 bath orbitals (dim(Himp) = 8, dim(Hbath) = 10). Without loss of generality, we can
indeed identify the bath space Hbath with C2B and assume that H0

bath = diag(ε1, ε1, · · · , εB , εB). In this
picture, the canonical basis of C2B corresponds to an orthonormal basis of bath spin-orbitals with energies
ε1, ε1, . . . , εB , εB . The matrix V models jumps from the bath to the impurity, while the matrix V † models
jumps from the impurity to the bath. The coupling terms Vi,j are also assumed to be real-valued due to
the absence of magnetic field.

In the seminal paper [4], the electronic bath was thought as the set of conducting electrons, for instance
described by a tight-binding model on a (truncated) lattice.

Remark 3.2.9. As for the Hubbard model, the z-component of the total spin operator ŜzAI = ŜzH +∑B
k=1 n̂k,↑ − n̂k,↓, the total number operator N̂AI = N̂H +

∑B
k=1 n̂k,↑ + n̂k,↓ and the Anderson Impurity

Hamiltonian ĤAI pairwise commute.
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ε1

ε2
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ε4

ε5

ε

↑↓
U2
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4

1

T34 = T43

↑↓

↓V14 = V41

Figure 2: The Anderson Impurity Model of an impurity (GH = C4, T, U) and a bath (B = 5, ε, V) in a 6
electrons state.

3.2.4 Dynamical Mean-Field Theory (DMFT)

Consider a Hubbard model defined by (GH , T, U) in one of its equilibrium states Ω. The purpose of
DMFT is to provide an approximation of the corresponding Green’s function G, and more precisely on
some blocks of this Green’s function.

To do so, DMFT uses a self-consistent mapping between the Hubbard model (GH , T, U) and a collection
of Anderson Impurity Models associated to a partition P of the vertices of the Hubbard graph GH . The
process, illustrated in Figure 3, is the following.

1. Choose a partition P = {Λp, p ∈ [[1, P ]]} of the L sites of the Hubbard model into P impurities
Λ1, · · ·ΛP , , tPp=1Λp = Λ, and consider for all p ∈ [[1, P ]] the induced subgraphs Gp = (Λp, Ep) with
Ep = {{i, j} ∈ E; i, j ∈ Λp}. This partition leads to the canonical orthogonal decomposition

HH =

P⊕
p=1

Hp, dim(Hp) = 2|Λp| = 2Lp, (3.20)

from which follows the decomposition of the Fock space

FH =

P⊗
p=1

Fp, dimFp = 4Lp . (3.21)

The decomposition (3.20) of the one-particle state space of the original Hubbard model gives rise
to block-operator representations of the exact Green’s function and self-energy (for the state Ω) of
the original Hubbard model

G(z) =


G1(z) ∗ · · · ∗
∗ G2(z) · · · ∗
...

...
. . .

...
∗ ∗ · · · GP (z)

 , Σ(z) =


Σ1(z) ∗ · · · ∗
∗ Σ2(z) · · · ∗
...

...
. . .

...
∗ ∗ · · · ΣP (z)

 ;
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2. The decomposition (3.20) also leads to a block-operator representation of the one-body Hamiltonian
corresponding to the non-interacting part of the Hubbard Hamiltonian

H0
H =


H0

1 ∗ · · · ∗
∗ H0

2 · · · ∗
...

...
. . .

...
∗ ∗ · · · H0

P

 ,

where the diagonal block H0
p is constructed from the induced hopping matrices Tp = T|Ep , 1 ≤ p ≤

P . Due to the locality of the interactions in the Hubbard model, the interaction term is “block-
diagonal” in the decomposition (3.21). It is represented by the induced on-site repulsion Up = U|Λp ,

and it reads ĤI = ⊕Pp=1Ĥ
I
p , with ĤI

p =
∑
i∈Λp

Uin̂i,↑n̂i,↓;

3. The AIM associated to the p-th impurity is defined by (i) the impurity state space Himp,p := Hp, (ii)
the impurity Hamiltonian defined by the induced Hubbard model (Gp, Tp, Up), (iii) some bath state
spaceHbath,p, bath one-body Hamiltonian H0

bath,p and coupling one-body Hamiltonian H0
coupling,p =(

0 V †p
Vp 0

)
to be specified. From each of these P AIMs, one can compute the Green’s functions

and self-energies

GAI,p(z) =

(
Gimp,p(z) ∗
∗ ∗

)
, ΣAI,p(z) =

(
Σimp,p(z) 0

0 0

)
,

for AIM equilibrium states Ωp of the same nature as Ω (see Remark 3.2.10 below for a comment on
this important point).

Λ1

Λ2
Λ3

G2

G1

G3
DMFT

P

∆1

∆3

∆2

Figure 3: A partition P = Λ1 t Λ2 t Λ3 of the 6 vertices of the C6 graph, and the 3 induced graphs
G1,G2,G3: the impurities of the corresponding AIMs are defined using the original Hubbard model, while
the bath and the impurity-bath coupling are specified by the DMFT approximation.

DMFT aims at computing approximations of the diagonal-blocks G1(z), · · · , GP (z) of the exact
Green’s function G(z). Ideally, the baths should be ajusted in such a way that Gimp,p = Gp, but of
course this is not possible since the functions Gp are unknown. To make DMFT a practical tool, the idea
is to introduce approximate Green’s functions and self-energies of the form

GDMFT(z) =


GDMFT,1(z) ∗ · · · ∗

∗ GDMFT,2(z) · · · ∗
...

...
. . .

...
∗ ∗ · · · GDMFT,P (z)

 , (3.22)

ΣDMFT(z) =


ΣDMFT,1(z) 0 · · · 0

0 ΣDMFT,1(z) · · · 0
...

...
. . .

...
0 0 · · · ΣDMFT,P (z)

 , (3.23)
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related by

GDMFT(z) = ((G0
DMFT)−1(z)− ΣDMFT(z))−1,

G0
DMFT(z) =

(
z −H0

H

)−1
,

and to choose the baths in such a way that

∀1 ≤ p ≤ P, GDMFT,p(z) = Gimp,p(z), (3.24)

ΣDMFT,p(z) = Σimp,p(z). (3.25)

Of course, it is not clear whether a collection of baths that satisfies the above conditions exists, and this
article partially answers this question.

Note that the DMFT Green’s function GDMFT(z) is not, a priori, the Green’s function of some
interacting quantum many-body problem which could be defined as in Section 3.2.1. Instead, it is
defined from an approximate self-energy ΣDMFT(z). Equations (3.23) and (3.25) indicate that, in the
DMFT approximation, each impurity interacts with its neighborhood as if the former were an impurity
and the latter a bath, in accordance with Theorem 3.2.8, hence the name of mean-field. This mean-
field is dynamical because it is frequency dependent, in contrast with static mean-field theory such as in
Hartree-Fock or Density-Matrix Embedding Theory (DMET).

Remark 3.2.10. In the above sketch of the DMFT framework, we did not specify the states (Ωp)p∈[[1,P ]]

of the associated AIMs from which the self-energies (Σimp,p)p∈[[1,P ]] are computed. In [22], it is implicitly

stated that, for a Hubbard model in the Gibbs state ΩH,β,εF as defined below in Section 3.2.5, the AIM’s
equilibrium states Ωp are defined to be Gibbs states as well Ωp = ΩAIM,β,ε′F

, with the same temperature as
that of the Gibbs state of the whole system, but with a priori different chemical potential ε′F . The latter
is to be chosen to satisfy appropriate filling conditions. We will address this question in a future work
and simply assume here that the ε′F = εF . Moreover, when working with the IPT solver, the chemical
potential is fixed by the on-site interaction, as detailed in Section 3.2.5.

Our analysis is based on a reformulation of conditions (3.24)-(3.25) using the hybridization functions
(∆p(z))1≤p≤P of the P impurity problems as the main variables. As mentionned previously, knowing ∆p

as well as Tp, Up and Ωp, suffices in principle to compute Σimp,p. In practice, this is done by using an
approximate impurity solver. A particular example of such a solver will be presented in Section 3.2.5.
Conversely, knowing (Σimp,p)1≤p≤P and T suffices to characterize the unique set (∆p(z))1≤p≤P for which
(3.24)-(3.25) hold true. Indeed, by denoting

Hp :=

P⊕
p 6=q=1

Hq,

ΣDMFT,p(z) =



ΣDMFT,1(z) · · · 0 · · · 0
...

. . .
...

0 · · · ΣDMFT,p−1(z) 0
0 · · · 0 ΣDMFT,p+1(z) · · · 0
...

. . .
...

...
0 · · · 0 0 · · · ΣDMFT,P (z)


,

and using the Schur complement formula, we have on the one hand

GDMFT,p(z) =
((
z − (H0

H + ΣDMFT(z))
)−1
)
p

=
(
z −

(
H0
p + ΣDMFT,p(z)

)
−Wp

(
z −

(
H0
p + ΣDMFT,p(z)

))−1
W †p

)−1

, (3.26)

where (
H0
p Wp

W †p H0
p̄

)
and

(
z − (H0

p + ΣDFMT,p(z)) −Wp

−W †p z − (H0
p + ΣDFMT,p(z))

)
(3.27)

are the block-representations of H0
H and (z − (H0

H + ΣDMFT(z))), respectively, in the decomposition
H = Hp ⊕Hp. Note that H0

p ∈ L(Hp), Wp ∈ L (Hp;Hp), and H0
p ,ΣDFMT,p(z) ∈ L (Hp). On the other

hand, using again the Schur complement formula, we have
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GAI,p(z) =
(
G0

AI,p(z)
−1 − ΣAI,p(z)

)−1
=
(
z −H0

AI,p − ΣAI,p(z)
)−1

=

(
z −H0

p − Σimp,p(z) −Vp
−V †p z −H0

bath,p

)−1

=

(
(z −H0

p − Σimp,p(z)−∆p(z))
−1 ∗

∗ ∗

)
,

so that
Gimp,p(z) = (z −H0

p − Σimp,p(z)−∆p(z))
−1. (3.28)

Conditions (3.24)-(3.25), together with (3.26)-(3.28) yield the self-consistent condition

∀1 ≤ p ≤ P, ∆p(z) = Wp

z −H0
p −

P⊕
q=1,q 6=p

Σimp,q(z)

−1

W †p . (3.29)

Note that the matrices Wp, H
0
p̄ depend only on the hopping matrix T through

[Wp]iσ,jσ′ =

{
Ti,j
0

if i ∈ Λp, j ∈ Λ \ Λp, {i, j} ∈ E, σ = σ′,
otherwise,

[H0
p̄ ]iσ,jσ′ =

{
Ti,j
0

if i, j ∈ Λ \ Λp, {i, j} ∈ E, σ = σ′,
otherwise,

where i, j ∈ Λ denote site indices and σ, σ′ ∈ {↑, ↓} spin indices.

Remark 3.2.11. This formulation of DMFT agrees with the original one [21, 22] in the translation-
invariant setting where

∀p ∈ [[1, P ]], Hp = H1, H0
p = H0

1 , Wp = W1, H0
p = H0

1
, Up = U1. (3.30)

In this setting, we can consider translation-invariant solutions to the DMFT equations, for which

∀p ∈ [[1, P ]], ∀z ∈ C+, Σimp,p(z) = Σimp(z), ∆p(z) = ∆(z),

where Σimp(z) and ∆(z) are related by the translation-invariant self-consistent condition

∆(z) = W1

(
z −H0

1̄ −
P⊕
q=2

Σimp(z)

)−1

W †1 . (3.31)

This setting is sketched in Figure 4. When P is a partition into singletons (single-site DMFT), condition
(3.30) is equivalent to the fact that U is constant and (GH , T) is vertex-transitive, namely that for all
λ1, λ2 ∈ Λ, there exists a graph isomorphism τ : Λ→ Λ such that

τ(λ1) = λ2, ∀λ, λ′ ∈ Λ, Tτ(λ),τ(λ′) = Tλ,λ′

In particular, the graph Cartesian product C�d
N of d copies of the N -cycle, which is the nearest neighbor

graph of a truncation of the d-dimensional square lattice, with constant hopping and on-site repulsion,
and artificial periodic boundary conditions (supercell method), is vertex-transitive due to the translation
invariance of the corresponding lattice. This setting was the one considered in the first DMFT compu-
tations [22]. Due to translation invariance, a single impurity problem has to be solved at each iteration.
Recall that the impurity solver is the computational bottleneck in DMFT.

The DMFT self-consistent equations (3.29), combined with an exact impurity solver, give the exact
Green’s function of the original Hubbard model in the following trivial limits.

Proposition 3.2.12 (Exactness of DMFT in some trivial limits). Consider a Hubbard model (GH , T, U)
in a Gibbs state Ωβ,εF . The self-consistent DMFT equations (3.29), combined with an exact impurity
solver, admit a unique solution in each of the following two settings:

1. non-interacting particles. If the on-site repulsion term is equal to zero (Ui = 0 for all i ∈ Λ), then
this solution is given by

∀p ∈ [[1, P ]], ∀z ∈ C+, Σimp,p(z) = 0,

∆p(z) = Wp

(
z −H0

p

)−1
W †p ; (3.32)
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Figure 4: Translation-invariant DMFT formalism.

2. disconnected graphs and atomic limit. If the partition P of GH is such that GH =
⊕P

p=1 Gp (meaning

EH = tPp=1Ep), that is if the partition decomposes the original Hubbard model (GH , T, U) into P
independent Hubbard models (Gp, Tp, Up), or if the hopping matrix T vanishes, then this solution is
given by

∀p ∈ [[1, P ]], ∀z ∈ C+, Σimp,p(z) = Σp(z),

∆p(z) = 0, (3.33)

where Σp is the exact self-energy associated to the p-th Hubbard model in the associated Gibbs State
Ωpβ,εF .

In both settings, DMFT is exact in the sense that

∀z ∈ C+, GDMFT(z) = G(z).

The purpose of DMFT [21] is to build an appoximation that complies with these two limiting cases.
Another limiting case in which DMFT is claimed to be exact is in the “infinite dimension” limit [44, 22].
We leave the mathematical investigation of this limit to future works.

We deduce from (3.32)-(3.33) that in the trivial limits considered in Proposition 3.2.12, the hybridiza-
tion functions ∆p(z) are either identically zero, or have a finite number of poles, so that the corresponding
baths can be chosen finite dimensional.

Anticipating on the following, we prove in Proposition 3.3.5 that, when coupled to the Iterated
Perturbation Theory (IPT) impurity solver, the translation-invariant self-consistent equation (3.31) has
no solution with a finite number of poles. This motivates the functional setting described in Section 3.3.

3.2.5 A specific impurity solver : the Iterated Perturbation Theory (IPT)
solver.

To define properly the IPT solver, we need first to introduce Matsubara’s formalism, and more precisely
Matsubara’s Green’s function G̃M .

Matsubara’s Green’s functions

Matsubara’s Green’s functions are defined only for Gibbs states Ωβ,εF at a given inverse temperature
β and chemical potential εF . These functions have been more extensively studied mathematically than
time-ordered Green’s functions [11, 12]. In this section, we recall their definition and prove an analytic
continuation result that will be useful for our analysis. The setup remains the same as the one introduced
in Section 3.2.1.

Definition 3.2.13 (Gibbs’s state and Matsubara’s time-ordered Green’s function). Given a particle-
number conserving Hamiltonian Ĥ ∈ S(F), that is [Ĥ, N̂ ] = 0, the Gibbs state Ωβ,εF at inverse temper-
ature β ∈ R∗+ and chemical potential εF ∈ R is defined through its density operator by

ρ̂ =
1

Zβ,εF
e−β(Ĥ−εF N̂), Zβ,εF = Tr

(
e−β(Ĥ−εF N̂)

)
.
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The Matsubara’s Green’s function G̃M is defined as the L(H)-valued map G̃M : [−β, β) → L(H) repre-
sented by the sesquilinear form verifying for all φ, φ′ ∈ H,

∀τ ∈ [−β, β), 〈φ,−G̃M (τ)φ′〉 = χR+
(τ) Ωβ,εF

(
M(âφ)(τ)â†φ′

)
− χR∗−(τ) Ωβ,εF

(
â†φ′M(âφ)(τ)

)
, (3.34)

where for all Ô ∈ L(F),

M(Ô) : [−β, β] 3 τ 7→ eτ(Ĥ−εF N̂)Ôe−τ(Ĥ−εF N̂)

is the Matsubara picture of Ô.

Recall that in our setting, any operator is trace-class since F is finite dimensional, hence Zβ,εF is
always finite.

As it is the case for the time-ordered Green’s function G̃, one can recast equation (3.34) using the
time-ordered product :

∀φ, φ′ ∈ H, ∀τ ∈ [−β, β), 〈φ,−G̃M (τ)φ′〉 = Ωβ,εF

(
T
(
M(âφ),M(â†φ′)

)
(τ, 0)

)
.

Note that the negative sign in the definition of G̃M must be consistent with the i prefactor in the definition
of G̃ for Theorem 3.2.15 below to hold. Considering the grand canonical Hamiltonian Ĥ ′ = Ĥ − εF N̂
as the Hamiltonian from which the Green’s function G̃ is defined, the Matsubara formalism involves the
following formal connection (known as Wick rotation [65]):

τ ↔ it

or, in other words, working with t ↔ −iτ where τ is real. Hence, the term imaginary-time Green’s
function [43].

Contrary to the Heisenberg picture Ô 7→ H(Ô), the Matsubara picture does not consist in a family of
C∗-morphisms: one has for all τ ∈ [−β, β],(

M(Ô)(τ)
)†

= M(Ô†)(−τ).

A consequence of this property is that the Matsubara’s Green’s function is Hermitian:(
G̃M (τ)

)†
= G̃M (τ).

Note moreover that Gibbs states are Kubo-Martin-Schwinger (KMS) states [12], meaning that they
satisfy the following property:

∀ Ô, Ô′ ∈ L(F), ∀τ ∈ [−β, 0], Ωβ,εF (M(Ô)(τ + β)Ô′) = Ωβ,εF (Ô′M(Ô)(τ)).

This implies that G̃M is β-anti-periodic, i.e.

∀τ ∈ [−β, 0), G̃M (τ + β) = −G̃M (τ).

As for the time-ordered Green’s function, the Matsubara’s Green’s function has a Källén-Lehmann’s
representation: given an orthonormal basis B of F which jointly diagonalizes Ĥ and N̂ (∀ψ ∈ B, Ĥψ =
Eψψ, N̂ψ = Nψψ), we have for all τ ∈ [0, β)

〈φ,−G̃M (τ)φ′〉 =
∑

ψ,ψ′∈B

eτ((Eψ−εFNψ)−(Eψ′−εFNψ′ ))〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉e−β(Eψ−εFNψ)

=
∑

ψ,ψ′∈B

eτ(Eψ−Eψ′+εF )〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉e−β(Eψ−εFNψ),

as Nψ′ = Nψ + 1 whenever 〈ψ′, â†φ′ψ〉 6= 0.

Similarly to the time-ordered Green’s function G̃, it is convenient to work with a Fourier representation
of the Matsubara Green’s function G̃M . Since the latter is defined only on [−β, β), it is quite natural
to extend G̃M to the real-line by periodicity and introduce the associated Fourier series with coefficients
defined by

∀n ∈ Z,
1

2

∫ β

−β
G̃M (τ)ein

π
β τdτ.

Due to the β-anti-periodicity of G̃M , the even Fourier coefficients vanish and it holds

1

2

∫ β

−β
G̃M (τ)ein

π
β τdτ =

{∫ β
0
G̃M (τ)ein

π
β τdτ if n is odd,

0 otherwise.
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Definition 3.2.14 (Matsubara’s Fourier series and frequencies). The Matsubara’s Fourier coefficients(
GMn

)
n∈Z are defined by

∀n ∈ Z, GMn =

∫ β

0

G̃M (τ)eiωnτdτ

where ωn = (2n+ 1)πβ is the n-th Matsubara’s frequency.

We thus have

∀τ ∈ [−β, β), G̃M (τ) =
1

β

∑
n∈Z

e−iωnτGMn .

The very reason these coefficients are useful in Green’s functions methods lies in the following theorem.

Theorem 3.2.15 (Matsubara’s Fourier coefficients analytic continuation). Let Ĥ ∈ S(F) be a particle-
number-conserving Hamiltonian, Ωβ,εF the associated Gibbs state, and G : C+ → L(H) the Generalized

Fourier Transform of the associated time-ordered Green’s function G̃ defined from the grand canonical
Hamiltonian Ĥ ′ = Ĥ − εF N̂ . Then G is the only analytic matrix-valued function such that

∀z ∈ C+, =(G(z)) :=
G(z)−G(z)†

2i
≤ 0, and (3.35)

∀n ∈ N, G(iωn) = GMn . (3.36)

Note that, since ω−n = −ωn−1 and G̃M is Hermitian, it holds

∀n ∈ N∗,
(
GMn−1

)†
= GM−n,

so that (3.36) actually holds for all n ∈ Z, with the extension of G to C− defined as in (3.6).

Remark 3.2.16. The requirement that G is analytic and verifies (3.35) is crucial for uniqueness: for
instance, for each m ∈ 2Z + 1, the function

C+ 3 z 7→
1− emβz

2
G(z) ∈ L(H)

also satisfies (3.36) and is analytic, but its imaginary part is not negative semi-definite.

Theorem 3.2.15 is extensively used for practical computations: it is sufficient to run the computations
for the Matsubara frequencies and then perform an analytic continuation [17].

Note that Theorem 3.2.15 works in particular for non-interacting Hamiltonians, which leads to the
following definition.

Definition 3.2.17 (Matsubara’s self-energy). The Matsubara’s self-energy Fourier coefficients
(
ΣMn

)
n∈Z

are defined by

∀n ∈ Z, ΣMn = iωn + εF −H0 −
(
GMn

)−1
.

In fact, the self-energy Σ : C+ → L(H) defined in (3.12) is the only analytic function with negative
imaginary part such that

∀n ∈ N, Σ(iωn) = ΣMn .

This follows from Proposition 3.3.3 and Theorem 3.A.8. One can define the Matsubara’s self-energy
Σ̃M (τ) by Fourier summation formula as in Definition 3.2.14, but this function will not play any role in
what follows.

With all these definitions in place, we can now introduce the final ingredient of the model under
investigation, namely the paramagnetic single-site translation-invariant Iterated Perturbation Theory
(IPT).
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IPT approximation

In this article, we will not discuss the derivation nor the validity of the Iterative Perturbation Theory (IPT)
approximation and refer the interested reader to [5]. As in the review paper [22], we only consider single-
site and translation-invariant DMFT. This seems to be a setting in which the usual IPT approximation
is generally considered as valid in the physics literature, while constructing an IPT-like approximation
for multi-site DMFT is still an active field of research [5]. In the former case, P is a partition of the L
sites into P = L singletons and the on-site repulsion U is constant as exposed in remark 3.2.11. Also, we
will focus on the paramagnetic case [51]. In other words, we will assume that there is no spin-symmetry
breaking, so that the spin components can be factored out as detailed in Appendix 3.B. In the single-site
translation invariant paramagnetic IPT-DMFT approximation considered in the sequel, we thus have
P = L and for z ∈ C+,

H0
H, G

DMFT (z), ΣDMFT (z) ∈ CP×P .

Recall that in translation invariant DMFT, we restrict ourselves to translation invariant solutions to the
DMFT equations, so that we consider only one hybridization function ∆ and self-energy Σ, with for all
z ∈ C+,

∆(z), Σ(z) ∈ C,

and we use the following notations

W † := W †p ∈ CP−1, H0
⊥ := H0

p ∈ C(P−1)×(P−1).

Moreover, we stick to the half-filled setting [22], for which the chemical potential εF of the Anderson
Impurity Model is set to U/2. The Hamiltonians of interest are then on the one-hand the grand canonical
Hubbard Hamiltonian ĤH − εF N̂H , and on the other hand the ”impurity” grand canonical Hamiltonian
ĤAI − εF N̂imp where N̂imp is the impurity number operator, complying with [22, eq. 14].

The IPT solver is based on a second order perturbation expansion of the Matsubara’s self-energy
Fourier coefficients ΣMimp,n of the single-site impurity problem in the parameter U : the Matsubara’s
self-energy Fourier coefficients of the impurity problem is approximated by

∀n ∈ N, ΣMimp,n ≈ ΣM,IPT
imp,n :=

U

2
+ U2

∫ β

0

eiωnτ
(
G̃M,0

imp (τ)
)3

dτ,

where G̃M,0
imp is the restriction to Himp of the Matsubara’s Green’s function of the non-interacting Hamil-

tonian H0
AI. The Fourier coefficients of G̃M,0

imp are given by

GM,0
imp,n =

((
G0

imp(iωn)
)−1 − εF

)−1

=
(
iωn −H0

imp −∆(iωn)
)−1

= (iωn −∆(iωn))
−1
,

since H0
imp = 0 and where the first equality is a consequence of a shift to enforce particle-hole symmetry

[22, p.50]. Finally, noticing that

∆(z) = W
(
z + εF −H0

⊥ + Σ(z)
)−1

W † = W
(
z −H0

⊥ − (Σ(z)− εF )
)−1

W †, (3.37)

we make the change of variable Σ← Σ− εF and we thus have, due to the filling condition,

ΣM,IPT
imp,n = U2

∫ β

0

eiωnτ

(
1

β

∑
n′∈Z

(iωn′ −∆(iωn′))
−1
e−iωn′τ

)3

dτ. (3.38)

The IPT approximation therefore provides an explicit expression of the Matsubara Fourier coefficients
of the impurity self-energy Σimp as a function of U and ∆. To reconstruct ΣIPTimp (z) from these Fourier
coefficients, we have to solve an Analytical Continuation Problem. The following result shows that, in
the case of finite-dimensional baths, this problem has a unique solution, which can be computed (almost)
explicitly. Our results are similar to computations already obtained in [30, eq. 4].

Proposition 3.2.18 (IPT solver for finite-dimensional baths). Let U ∈ R, ∆ : C+ → C of the form

∀z ∈ C+, ∆(z) =

K∑
k=1

ak
z − εk

, with ε1 < ε2 < · · · < εK and ak > 0 for all 1 ≤ k ≤ K, (3.39)
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and (Σimp,n)n∈N defined by

∀n ∈ N, Σimp,n = U2

∫ β

0

eiωnτ

(
1

β

∑
n′∈Z

(iωn′ −∆(iωn′))
−1
e−iωn′τ

)3

dτ.

Then, the Analytical Continuation Problem (ACP)
Σimp : C+ → C+

Σimp is analytic

∀n ∈ N, Σimp(iωn) = Σimp,n

(3.40)

has a unique solution, which is given by

∀z ∈ C+, ΣIPTimp (z) = U2
K+1∑

k1,k2,k3=1

a′k1,k2,k3

z −
(
ε′k1

+ ε′k2
+ ε′k3

) , (3.41)

where ε′1 < ε′2 < · · · < ε′K+1 are the (K + 1) real roots of the equation

ε−∆(ε) = 0,

which satisfy the interlacing relation

ε′1 < ε1 < ε′2 < ε2 < · · · < εK < ε′K+1,

and for all k1, k2, k3 ∈ [[1,K + 1]], ak1,k2,k3 is defined by

a′k1,k2,k3
=

1 + e−β(ε′k1
+ε′k2

+ε′k3
)(

1 + e−βε
′
k1

)(
1 + e−βε

′
k2

)(
1 + e−βε

′
k3

) 3∏
i=1

(
1−∆′(ε′ki)

)−1
> 0. (3.42)

We denote by
ΣIPTimp = IPTβ(U,∆)

the output of this solver. At this time, this solver is defined only for finite baths, that is for hybridization
functions that are rational functions of the form (3.39). We will see later (in Proposition 3.3.8) that
this map can be extended by (weak) continuity to the space of all physically admissible hybridization
functions. We thus finally obtain the system of translation invariant paramagnetic single-site IPT-DMFT
equations

∀z ∈ C+, ∆(z) = W
(
z −H0

⊥ − Σ(z)
)−1

W † (3.43)

Σ = IPTβ(U,∆), (3.44)

where the on-site interaction energies U ∈ R, the inverse temperature β > 0, the vector W † ∈ CP−1 and
the matrix H0

⊥ ∈ C(P−1)×(P−1) obtained from the hopping matrix T are the parameters of the model,
and where ∆ : C+ → C and Σ : C+ → C are the unknowns.

In the remainder of this article, our main focus will be the existence of solutions to the above equa-
tions.

3.3 Main results

Let us introduce and recall some useful notation. We denote by

C+ := {z ∈ C | =(z) > 0}

the complex open upper-half plane, that is the set of complex numbers with positive imaginary part. For
a matrix M ∈ Cn×n, n ≥ 1, the imaginary part of M is defined by

=(M) =
M −M†

2i
.
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The set of Hermitian matrices of size n is denoted by Sn(C), and the set of positive-semidefinite matrices
by S+

n (C). The notation M ≥ 0 (resp. M > 0) means that the matrix M is positive semidefinite (resp.
positive definite). In the following, we will also deal with measure and probability theory. The set of
finite signed Borel measures on R is denoted by M(R). The subset M+(R) ⊂ M(R) is the set of finite
positive Borel measures on R, and finally, the subset P(R) ⊂M+(R) denotes the set of Borel probability
measures on R.

For a positive Borel measure µ on R, we say that µ has a finite moment of order k ∈ N if
∫
R |ε|kdµ(ε) <

∞. In this case, we denote by mk(µ) =
∫
R ε

kdµ(ε) its k-th moment. In particular, µ is finite if and only
if it has a finite moment of order 0. In this case, µ ∈M+(R) and its 0-th moment is called the mass of µ,
denoted by µ(R) = m0(µ) =

∫
R dµ. These notation and considerations extend to the case of matrix-valued

measures, as will be discussed in the next section.

3.3.1 Pick functions

Our mathematical framework intersects with the realm of complex analysis pioneered by Pick [49] and
Nevanlinna [45], focusing on the study of so-called Pick functions. A Pick function is a map f : C+ → C+

which is analytic. In this article, we use the term Pick functions, but several terminologies coexist in
the literature: Nevanlinna functions, Herglotz functions, Riesz functions, or R-functions A Pick matrix
is an analytic map f : C+ → Cn×n, n ≥ 1, such that for all z ∈ C+,=(f(z)) ≥ 0 (i.e. =(f(z)) ∈ S+

n (C)).
Sometimes, it is convenient to extend Pick matrices to the lower-half-plane C−. In this case, the usual
convention is to set for all z ∈ C−, f(z) = f(z)† [23]. One of the most important results about Pick
functions is that they have an integral representation.

Theorem 3.3.1 (Nevanlinna-Riesz representation theorem [23]). Let f : C+ → Cn×n be a Pick matrix.
There exist a ∈ S+

n (C), b ∈ Sn(C) and µ a Borel S+
n (C)-valued measure on R such that (1 + |ε|)−1 is

µ-integrable and

∀z ∈ C+, f(z) = az + b+

∫
R

(
1

ε− z −
ε

1 + ε2

)
dµ(ε). (3.45)

The measure µ is called the Nevanlinna-Riesz measure of f , and a = lim
y→+∞

1

iy
f(iy), b = <(f(i)) :=

(f(i) + f(i)†)/2. In the particular case of Pick functions, i.e. n = 1, we have a ≥ 0, b ∈ R, and µ is a
positive Borel measure on R, with the same integrability condition.

The following theorem extends to Pick matrices a result on Pick functions which can be found in [15]
and [2, Theorem 3.2.1]. It states that the moments of the Nevanlinna-Riesz measure of a Pick function
or matrix are related to its expansion on the imaginary axis at +∞.

Theorem 3.3.2. Let f : C+ → Cn×n be a Pick matrix and µ its Nevanlinna-Riesz measure. Let n ∈ N.
The function f satisfies:

− f(iy) = m−2(iy) +m−1 +
m0

iy
+

m1

(iy)2
+

m2

(iy)3
+ · · ·+ m2n

(iy)2n+1
+ oy→+∞

(
1

y2n+1

)
(3.46)

if and only if µ has finite moments of order less than or equal to 2n, i.e. for all x ∈ Cn, 〈x,
∫
R |ε|kdµ(ε)x〉 <

∞ for 0 ≤ k ≤ 2n. For 0 ≤ k ≤ 2n, the coefficient mk is then the k-th moment of µ, i.e. mk =∫
R ε

kdµ(ε) ∈ Sn(C).

Proof. The result for Pick functions can be found in [15] and [2, Theorem 3.2.1]. To extend the result to
Pick matrices, it suffices to notice f is a Pick matrix if and only if for all x ∈ Cn, the map fx : z ∈ C+ 7→
〈x, f(z)x〉 is a Pick function.

As mentioned in the previous section, Pick matrices are related to the study of Green’s functions
methods in general, and to DMFT in particular because of the following result.

Proposition 3.3.3 (−G,−∆,−Σ are Pick).

1. Let Ĥ be a Hamiltonian on Fock(Cn), the Fock space associated to H ' Cn, and G : C+ → Cn×n
the one-body Green’s function of Ĥ in an equilibrium state. Then −G is a Pick matrix.
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2. Let Ĥ be a Hamiltonian on Fock(Cn), with non-interacting Hamiltonian dΓ(H0), G0 the one-body
Green’s function of dΓ(H0), G the one-body Green’s function of Ĥ in an equilibrium state of Ĥ,
and Σ : C+ → Cn×n the self-energy defined by

Σ(z) := G0(z)−1 −G(z)−1.

Then −Σ is a Pick matrix.

3. Let ∆ : C+ → Cn×n be the hybridization function of some Anderson Impurity Model (AIM) with
impurity one-particle state space Cn. Then −∆ is a Pick matrix.

Remark 3.3.4. In condensed matter physics, the Nevanlinna-Riesz measure of −G is the so-called
spectral function [43].

The following proposition highlights the fact that, the single-site translation-invariant IPT-DMFT
equations have no solution with hybridization functions of a finite-dimensional AIM.

Proposition 3.3.5 (Non-existence of solutions to the finite-dimensional bath single-site paramagnetic
translation-invariant IPT-DMFT equations). Apart from the limit cases described in Proposition 3.2.12,
the single-site paramagnetic translation-invariant IPT-DMFT equations (3.43)-(3.44) have no finite-
dimensional bath solution, that is no solution ∆ of the form

∆(z) =

K∑
k=1

ak
z − εk

, K ≥ 1, ak > 0, εk ∈ R.

This implies that finding a solution to the DMFT equations requires considering infinite-dimensional
bath hybridization functions. The appropriate function space can be characterized in terms of Nevanlinna-
Riesz measures, as will be shown in the subsequent section.

3.3.2 Functional setting: the Bath Update and IPT maps

The DMFT map is the composition of the IPT map and the Bath Update (BU) map, which we will
study separately. Before focusing on the paramagnetic single-site translation-invariant case, let us get
back to the general case presented in Section 3.2.4. First, we formalize in our setting the definition of the
BU map F SC. It has been proved by Lindsey, Lin and Schneider [41] that the BU map is well defined
when the Nevanlinna-Riesz measure of each self-energy is a finite sum of Dirac measures, which means
in particular that the self-energy is a rational function. The following proposition extends this result to
the case of finite S+

n (C)-valued measures, by using a different approach. In the following, we will denote
by Lp := |Λp| the size of the p-th fragment, that is the cardinality of the subgraph Λp ⊂ Λ, and identify
Hp with C2Lp for convenience. Recall that the cardinality of the graph Λ is denoted by L = |Λ|. The
spaces to which the self-energies Σp and the hybridization functions ∆p belong are respectively given by

Sp =

{
z ∈ C+ 7→ C +

∫
R

dµ(ε)

z − ε ; C ∈ S2Lp(C), µ ∈M(R,S+
2Lp

(C))

}
, (3.47)

where M(R,S+
n (C)) is the set of finite S+

n (C)-valued Borel measures on R, and

Dp =

{
z ∈ C+ 7→

∫
R

dν(ε)

z − ε ; ν ∈M(R,S+
2Lp

(C)), ν(R) = W †pWp

}
,

where Wp ∈ C2(L−Lp)×2Lp is defined in (3.26)-(3.27). These definitions are motivated by the consequences
of Proposition 3.3.5 and the statements of Propositions 3.3.6 and 3.3.8.

Proposition 3.3.6 (Bath Update map: Σ 7→ ∆). For 1 ≤ p ≤ P , let Σp ∈ Sp, and let µp be the
Nevanlinna-Riesz measure associated to Σp. For 1 ≤ p ≤ P , the hybridizations functions ∆p given by

∆p(z) = Wp

z −H0
p −

⊕
q 6=p

Σq(z)

−1

W †p (3.48)

for z ∈ C+ are well-defined. With this definition, −∆p is a Pick matrix and there exists a finite measure
νp ∈M(R,S+

2Lp
(C)) such that

∀z ∈ C+, ∆p(z) =

∫
R

dνp(ε)

z − ε and νp(R) = WpW
†
p , (3.49)

namely ∆p ∈ Dp.
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In the particular case of the single-site paramagnetic translation-invariant IPT-DMFT framework,
we have Lp = 1 for all 1 ≤ p ≤ P and the Nevanlinna-Riesz measures of the self-energies and the
hybridization functions are finite positive Borel measures on R. The self-energy space (3.47) takes the
simpler form:

SIPT
p =

{
C+ 3 z 7→ U2

∫
R

dµ(ε)

z − ε ∈ C ; µ ∈M+(R)

}
, (3.50)

and is therefore in one-to-one correspondence with the set M+(R) of finite positive Borel measures on
R. The hybridization space becomes

DIPT
p =

{
C+ 3 z 7→ |W|2

∫
R

dν(ε)

z − ε ∈ C ; ν ∈ P(R)

}
, (3.51)

and is thus in one-to-one correspondence with the set P(R) of Borel probability measures on R. These
one-to-one correspondences allow us to focus on the measure spacesM+(R) and P(R), and we will study
the DMFT loop in terms of measures from now on. The BU map can then be defined as a function F SC

between measure spaces as follows.

Corollary 3.3.7 (BU map in the IPT-DMFT framework: F SC : Σ 7→ ∆). The Bath Update (BU) map
in the paramagnetic single-site translation-invariant IPT-DMFT framework is defined as the function
F SC :M+(R)→ P(R) such that

F SC(µ) = ν,

with

W †pWp

∫
R

dν(ε)

z − ε = W

(
z −H0

⊥ − U2

∫
R

dµ(ε)

z − ε

)−1

W †. (3.52)

In the DMFT loop, the impurity solver is the focus of the second stage. Within our model, we define
the IPT map F IPT, which transforms a given hybridization function ∆ into a self-energy Σ. As well as
the Bath Update map, this mapping operates across measure spaces and maps Borel probability measures
to finite positive Borel measures.

Proposition 3.3.8 (Definition of the IPT map ). Let ν ∈ P(R) and ∆ ∈ DIPT
p the hybridization function

associated with ν: for all z ∈ C+,

∆(z) = |W|2
∫
R

dν(ε)

z − ε .

There exists ξ ∈ P(R), such that for all z ∈ C+,∫
R

dξ(ε)

z − ε =
1

z −∆(z)
. (3.53)

Then define

ξ̃(dε) :=
ξ(dε)

1 + e−βε
, (3.54)

µ̃ := ξ̃ ∗ ξ̃ ∗ ξ̃, (3.55)

where ∗ is the convolution product, and

µ(dε) := (1 + e−βε)µ̃(dε). (3.56)

Finally, define the self-energy associated to the measure µ by

Σ(z) = U2

∫
R

dµ(ε)

z − ε . (3.57)

The measure µ is a positive finite measure: µ ∈ M+(R), hence Σ ∈ SIPT
p , where SIPT

p is defined in

(3.50). The IPT map F IPT : P(R)→M+(R) is defined by

F IPT(ν) = µ.

Moreover, the map DIPT
p 3 ∆ 7→ Σ ∈ SIPT

p defined by (3.53)-(3.57) is continuous with respect to the
weak topology of measures, and coincides with the IPT solver defined in Proposition 3.2.18 on finite-
dimensional bath hybridization functions, hence it is its unique continuous extension to the set Dp[]

IPT .
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Now that we have defined the maps F IPT and F SC, we define the paramagnetic translation-invariant
single-site IPT-DMFT map as

FDMFT := F SC ◦ F IPT : P(R)→ P(R).

For the sake of brevity, we will sometimes refer to FDMFT as the IPT-DMFT map rather than restating
all the assumptions: paramagnetic framework, translation-invariant and single-site. In the same way, we
refer to fixed points of FDMFT as IPT-DMFT solutions. Such fixed points (more precisely the associated
hybridization functions and self-energies) are indeed solutions of the single-site paramagnetic translation-
invariant IPT-DMFT equations (3.43)-(3.44).

3.3.3 Existence and properties of IPT-DMFT solutions

The main result of this paper is the existence of a solution to the DMFT equations (3.43)-(3.44) in the
paramagnetic translation-invariant single-site framework, using the IPT impurity solver.

Theorem 3.3.9 (Existence of a fixed point). The IPT-DMFT map FDMFT has a fixed point ν ∈ P(R).

Moreover, IPT-DMFT solutions have finite moments of all orders.

Proposition 3.3.10. Let ν0 ∈ P(R), ν = FDMFT(ν0), and k ∈ 2N. If ν0 ∈ P(R) has finite k-th
moment, then ν has finite (k + 4)-th moment. In particular, any fixed point of the IPT-DMFT map has
finite moments of all orders.

3.4 Proofs

In this section, we give the proofs of the results stated in Section 3.2 and Section 3.3. Among other
things, we will make use of the results stated in Section 3.3.1 about Pick functions and of some results
from measure theory, which will be recalled when needed. As we will discuss continuity of functions
defined on measure spaces, we must specify the topology we are considering. Recall that a sequence
(µn)n∈N of finite Borel measures on R is said to converge weakly to µ if for all bounded continuous
function f ∈ C0

b (R), ∫
R
f dµn →

∫
R
f dµ. (3.58)

It converges vaguely to µ if (3.58) holds for all f ∈ C0
0(R), the space of continuous functions from R to R

vanishing at infinity. Weak convergence clearly implies vague convergence, and the converse is also true
if all the µn’s are probability measures, since R is locally compact [62]. We will also make use of the
notions of Wasserstein distance and optimal transportation on R. The Wasserstein 2-distance between
two Borel probability measures µ and ν on R is defined by

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
R2

|x− y|2dπ(x, y)

) 1
2

, (3.59)

where Π(µ, ν) is the set of all couplings of µ and ν, i.e. of Borel probability measures on R × R whose
marginals with respect to the first and second variables are respectively µ and ν. The infimum in the
definition (3.59) is actually a minimum, and there exists in fact a unique πµ,ν ∈ Π(µ, ν) such that
W2(µ, ν)2 =

∫
|x− y|2dπµ,ν(x, y) [53].

3.4.1 Proofs of the results in Section 3.2

Most of the results presented in Section 3.2 are known in other settings similar to ours. However, the
proofs of Propositions 3.2.3 and 3.2.8 found in the literature are limited to specific states (such as ground
states or Gibbs states) and do not emphasize the importance of the notion of equilibrium state. Our
proofs overcome this artificial distinction. Additionally, Proposition 3.2.12 is often regarded as obvious
in the physics literature, but it is typically proven only for translation-invariant settings. Our proof
allows for the computation of the Green’s function of a strictly interacting Hubbard model and facilitates
understanding of the DMFT equations, which we hope will aid the reader in grasping the machinery
introduced in this section. Furthermore, Theorem 3.2.15 has long been considered proven in [7] within
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the physics community. However, the proof given in [7] does not utilize classical analytic continuation
techniques known at the time. Our proof is entirely different and relies precisely on analytic continuation
techniques. We hope it sheds light on certain aspects of [7] in this specific finite-dimensional Hilbert space
setting. In particular, our proof of uniqueness of the analytic continuation of the Matsubara’s Fourier
coefficients does not rely on the asymptotic behavior of the Green’s function, but on the properties of
Pick functions.

Proof of Proposition 3.2.3

Our proof is based on the time evolution of annihilation/creation propagators for ideal Fermi gases. More
precisely, one has, as detailed in [12, p.46],

H(âφ)(t) = âeitH0φ. (3.60)

For all z ∈ C+, we have to show that (z−H0)G(z) = (z−H0)(G+(z) +G−(z̄)†) = 1. Integrating by
parts, one has

(z −H0)G+(z) = iG̃(0+) +

∫
R∗+
eizt

(
i
d

dt
G̃(t)−H0G̃(t)

)
dt,

and for t > 0, iG̃(t) represents the sesquilinear form defined by

∀φ, φ′ ∈ H, 〈φ, (iG̃)(t)φ′〉 = Ω(H(âφ)(t)â†φ′),

so that

〈φ, (i d
dt
G̃)(t)φ′〉 = Ω(

d

dt
(H(âφ))(t)â†φ′) = −iΩ(H(âH0φ)(t)â†φ′) = 〈H0φ, G̃(t)φ′〉 = 〈φ,H0G̃(t)φ′〉.

Similarly, another integration by parts leads to

(z −H0)G−(z̄)† = iG̃(0−)† +

∫
R−

e−izt(i
d

dt
G̃(t)− G̃(t)H0)†dt.

For t < 0, iG̃(t) represents the sesquilinear form defined by

∀φ, φ′ ∈ H, 〈φ, (iG̃)(t)φ′〉 = −Ω(â†φ′H(âφ)(t)).

Note that, because Ω is an equilibrium state and by the cyclic property of the trace, one has

〈φ, (iG̃)(t)φ′〉 = −Ω(H(â†φ′)(−t)âφ) (3.61)

(equilibrium propagators are time-translation-invariant), so that

〈φ, (i d
dt
G̃)(t)φ′〉 = iΩ(H(â†H0φ′)(−t)âφ) = 〈φ, G̃(t)H0φ′〉.

Finally, one has for φ, φ′ ∈ H,

〈φ, (z −H0)G(z)φ′〉 = 〈φ, iG̃(0+)φ′〉+ 〈φ, iG̃(0−)†φ′〉 = Ω(âφâ
†
φ′ + â†φ′ âφ) = 〈φ, φ′〉,

because Ω is a state and the annihilation/creation operators satisfy the CAR.

Proof of Theorem 3.2.8

For the simplicity of the proof, note first that an equivalent definition of an impurity problem is that
there exists an impurity space Himp ⊂ H such that the interacting part ĤI of the Hamiltonian Ĥ as
introduced in (3.9) belongs to the following subalgebra

ĤI ∈ A{â†φâφ′ , φ, φ′ ∈ Himp}. (3.62)

In other words, the interacting part of the Hamiltonian is an element of the Gauge Invariant Canonical
Anti-commutation Relations (GICAR) algebra generated by Himp (see [56] for a concise introduction to
GICAR algebras).
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From that, the proof is a generalization of [40]. To prove the sparsity pattern of Σ, we have to prove
that for all z ∈ C+, for all φ ∈ H, φ′ ∈ H⊥imp,

〈φ,G(z)Σ(z)φ′〉 = 0 and 〈φ′,Σ(z)G(z)φ〉 = 0. (3.63)

The first equality is equivalent to

〈φ,G(z)(z −H0)φ′〉 = 〈φ, φ′〉,

and, similarly as in the previous proof, we have

〈φ,G(z)(z −H0)φ′〉 = 〈φ, φ′〉+

∫
R+

eizt
(
d

dt
〈φ, iG̃(t)φ′〉 − 〈φ, G̃(t)H0φ′〉

)
dt

+

∫
R∗−

e−izt
(
d

dt
〈iG̃(t)φ, φ′〉 − 〈G̃(t)H0φ, φ′〉

)
dt.

Now, for all t ∈ R+, we have using the cyclicity of the trace, similarly as in (3.61),

d

dt
〈φ, iG̃(t)φ′〉 = −iΩ

(
âφH([Ĥ, â†φ′ ])(−t)

)
.

To compute the commutator, note first that for all φ1, φ2 ∈ Himp, we have using the CAR

[â†φ1
âφ2

, â†φ′ ] = 〈φ2, φ
′〉â†φ1

= 0

since φ′ ∈ H⊥imp, so that â†φ′ commutes with the generators of the algebra to which ĤI belongs, hence

with ĤI . Moreover, we have using (3.60),

[dΓ(H0), â†φ′ ] = −i d
dt

(
t 7→ H(â†φ′)H0

)
(0) = â†H0φ′ ,

where H(·)H0 denotes the Heisenberg picture associated to the non-interacting Hamiltonian dΓ(H0), so
that we end up with

d

dt
〈φ, iG̃(t)φ′〉 = −iΩ

(
âφH(â†H0φ′)(−t)

)
= 〈φ, G̃(t)H0φ′〉.

One shows, using the same techniques, that for all t ∈ R∗−,

d

dt
〈iG̃(t)φ, φ′〉 = 〈G̃(t)H0φ, φ′〉

hence the first equality of (3.63) is proven. The second equality can be proved similarly.

Proof of Proposition 3.2.12

We stick to the case in Remark 3.2.10, where the AIM states are Gibbs states at inverse temperature
β and chemical potential εF . Now for the first case, if U = 0, the AIM are non-interacting, hence the
Green’s functions are the non-interacting Green’s functions, the self-energies Σimp,p are identically zero,
and the hybridization functions are given by, for all z ∈ C+,

∆p(z) = Wp

(
z −H0

p

)−1
W †p .

Now if the partition P is such that GH =
⊕P

p=1 Gp, or if T = 0, we have

H0
H,p,p = 0,

so that the hybridization functions ∆p are identically zero. This is equivalent to zero-dimensional baths,
and all the AIMs reduce to Hubbard models defined by (Gp, Tp, Up). Hence the self-energies Σp are the
self-energies associated to the corresponding Hubbard models.
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Proof of Theorem 3.2.15

We start by proving the equality. On the one hand, the Källén-Lehmann representation (3.7) of G̃
associated to the grand canonical Hamiltonian Ĥ ′ = Ĥ − εF N̂ reads for φ, φ′ ∈ H and z ∈ C+,

〈φ,G(z)φ′〉 =
∑

ψ,ψ′∈B

(ρψ + ρψ′)〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉
1

z + εF + (Eψ − Eψ′)
.

On the other hand, the Källén-Lehmann representation of G̃M reads for φ, φ′ ∈ H and n ∈ N,

〈φ,GMn φ′〉 =
∑

ψ,ψ′∈B

(
ρψ + ρψe

β(Eψ−Eψ′+εF )
)
〈ψ, âφψ′〉〈ψ′, â†φ′ψ〉

1

iωn + εF + (Eψ − Eψ′)
.

Note now that whenever 〈ψ, âφψ′〉 6= 0, we have Nψ′ = Nψ + 1 and then

ρψe
β(Eψ−Eψ′+εF ) = e−β(Eψ′−εF (Nψ+1)) = ρψ′ ,

yielding
∀n ∈ N, G(iωn) = GMn .

To prove uniqueness, we use the fact that−G is a Pick function (see Proposition 3.3.3), and its Nevanlinna-
Riesz measure is a weighted sum of finitely many Dirac measures. It follows that the Analytical Con-
tinuation Problem defined by

(
iωn,−GMn

)
n∈N has no other solution thanks to Theorem 3.A.8, which

concludes.

Proof of Proposition 3.2.18

Proposition 3.2.18 can actually be seen as a corollary of Proposition 3.3.8, but we give at this stage a
pedestrian proof, which enlights the way the hybridization function ”encapsulates” the energy of the bath
orbitals and their coupling to the impurity. We have for all z ∈ C+,

(z −∆(z))−1 =
(
z −H0

AIM

)−1

1,1
, where H0

AIM =



0
√
a1
√
a2 · · · √aK√

a1 ε1 0 · · · 0
√
a2 0 ε2

. . .
...

...
...

. . .
. . . 0√

aK 0 . . . 0 εK

 ,

which holds true in particular for z = iωn. Note that H0
AIM is self-adjoint and that for all z ∈ C+, using

functional calculus, ∫ β

0

eiωnτ
−e−τH0

AIM

1 + e−βH
0
AIM

dτ =
(
iωn −H0

AIM

)−1
,

so that we can perform explicitly the Fourier summation :

1

β

∑
n′∈Z

e−iωnτ (iωn′ −∆(iωn′))
−1 =

(
−e−τH0

AIM

1 + e−βH
0
AIM

)
1,1

= −
K+1∑
k=1

|P1,k|2e−τε
′
k

1 + e−βε
′
k

, (3.64)

where P ∈ C(K+1)×(K+1) is a unitary matrix such that H0
AIM = Pdiag(ε′1, · · · , ε′K+1)P †. The right-

hand side of (3.64) is a continuous function on [0, β) and the following integral is well-defined and reads∫ β

0

eiωnτ

(
1

β

∑
n′∈Z

(iωn′ −∆(iωn′))
−1
e−iωn′τ

)3

dτ =

K+1∑
k1,k2,k3=1

1 + e−β(ε′k1
+ε′k2

+εk3
)

(1 + e−βε
′
k1 )(1 + e−βε

′
k2 )(1 + e−βε

′
k3 )

|P1,k1
|2|P1,k2

|2|P1,k3
|2

iωn − (ε′k1
+ ε′k2

+ ε′k3
)
.

Let us now compute the spectrum of H0
AIM: a simple calculation shows that its characteristic polynomial

χH0
AIM

reads

χH0
AIM

(ε) =

(
K∏
k=1

(ε− εk)

)
ε−

K∑
k=1

ak

K∏
l=1,l 6=k

(ε− εl).
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By assumption on the ak’s and εk’s, we have χH0
AIM

(εk) 6= 0, so that

χH0
AIM

(ε) = 0 ⇐⇒ ε−∆(ε) = 0.

This in fact straightforwardly follows from the Schur complement approach. Moreover, one can compute
explicitly |P1,k|2: by definition, we have for all k ∈ [[1,K + 1]] and l ∈ [[1,K]],

√
alP1,k + εlPl+1,k = ε′kPl+1,k =⇒ al

(ε′k − εl)2
|P1,k|2 = |Pl+1,k|2,

which gives after summation on l and using the fact that PP † = 1,

|P1,k|2 = (1−∆′(ε′k))−1.

This shows that ΣIPT(iωn) = Σimp,n, hence ΣIPT is a solution to the Analytical Continuation Problem
(ACP) defined in (3.40). Then, Theorem 3.A.8 ensures that there is no other solution, which concludes
the proof.

3.4.2 Proof of Proposition 3.3.3 (−G,−Σ,−∆ are Pick matrices)

The fact that the Green’s function G is a Pick matrix readily follows from the KL representation (3.7)
and inequality (3.8).

Combining (3.10) and (3.12), the self-energy can be written as

∀z ∈ C+, Σ(z) = z −H0 −G(z)−1.

Recall that we know from (3.8) that G(z) is invertible for all z ∈ C+. Since −G is Pick, G−1 is Pick.
This readily implies that Σ is analytic. Let us now prove that −Σ is Pick. First, we infer from the KL
representation (3.7) that for all k ∈ N, there exists m0, . . . ,m2k ∈ Cn×n such that it holds

G(iy) =
m0

iy
+

m1

(iy)2
+

m2

(iy)3
+ · · ·+ m2k

(iy)2k+1
+ oy→+∞

(
1

y2k+1

)
.

Using the anti-commutation relation âφâ
†
φ′+ â†φ′ âφ = 〈φ, φ′〉 and the normalization condition

∑
ψ∈B ρψ =

1, we obtain that m0 = In. As a consequence, we have

G(iy)−1 = (iy)In −m1 +
1

iy
(m2

1 −m2) + oy→+∞

(
1

y

)
.

In view of Theorem 3.3.2, the Pick matrix G−1 has a Nevanlinna-Riesz representation of the form

G(z)−1 = z − Σ∞ +

∫
R

dµ(ε)

ε− z ,

with Σ∞ ∈ Sn(C) and µ a finite Borel S+
n (C)-valued measure on R. We thus obtain that

∀z ∈ C+, Σ(z) = Σ∞ +

∫
R

dµ(ε)

z − ε ,

from which we deduce that −Σ is Pick. As a matter of fact, Σ is a matrix-valued rational function, that
is µ is a weighted sum of finitely many Dirac measures.

Let ∆ be a hybridization function of an AIM defined as (3.18). Since H0
bath is self-adjoint, its spectrum

is real and (3.18) thus defines an analytic function on C+. In addition, for all z ∈ C+, =(z −H0
bath) =

=(z) > 0 hence =((z −H0
bath)−1) < 0. Since the congruence preserves the sign of the imaginary part we

have =(∆(z)) ≤ 0. This shows that −∆ is a Pick matrix.

3.4.3 Proof of Proposition 3.3.5 (no finite-dimensional bath solution)

In this section, we prove the statement of Proposition 3.3.5, which states that there is no solution to the
IPT-DMFT equations considering only hybridization functions with a finite-dimensional bath.
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Lemma 3.4.1. Let f and g be rational matrix-valued functions of size n ≥ 1 given by

f(z) =

K∑
k=1

Ak
z − εk

and g(z) = (z − C − f(z))−1,

where A1, . . . , AK ∈ S+
n (C) \ {0} are positive semi-definite matrices, ε1 < · · · < εK are real numbers and

C ∈ Sn(C). Assume that the matrices A1, . . . , AK and C commute. Then g writes

g(z) =

K′∑
k=1

A′k
z − ε′k

, (3.65)

where K ′ ≥ K + 1, A′k ∈ S+
n (C) \ {0}, and ε′k ∈ R, with ε′1 < · · · < ε′K′ .

Proof. The fact that C+ 3 z 7→ −g(z) is a Pick matrix follows from the fact that −f is also a Pick matrix
and that =(M) > 0 implies that M is invertible and that =(M−1) < 0. Indeed, for all z ∈ C+, we have

= (z − C − f(z)) = =(z)−=(f(z)) ≥ =(z) > 0.

Theorem 3.3.1 gives a Nevanlinna-Riesz representation for −g, but since g is a rational matrix-valued
function, the Nevanlinna-Riesz measure of −g is just a finite sum of Dirac measures. We thus have

g(z) = −Ãz − B̃ +

K′∑
k=1

A′k
z − ε′k

,

with the stated properties of A′k and ε′k, and Ã ≥ 0, B̃ ∈ SL(C). Moreover, since g(iy) −→
y→+∞

0 due to

the definition of g, the affine part of −g is zero. This ensures that g is of the form (3.65). It remains
to show that the number of poles of g is at least K + 1. Because of the assumption that the matrices
A1, . . . , AK and C commute, they can be codiagonalized in an orthonormal basis. Let P be the unitary
matrix, such that PAkP

† = diag(λ1
k, . . . , λ

L
k ) and PCP † = diag(c1, . . . , cL). We have

g(z) = P †diag

 1

z − c1 −∑K
k=1

λ1
k

z−εk

, . . . ,
1

z − cL −∑K
k=1

λLk
z−εk

P.

The set of poles of g contains the union of the sets of zeros of the rational functions ul(z) = z − cl −∑K
k=1

λlk
z−εk , for 1 ≤ l ≤ L. The zeros of ul are on the real axis, because =(ul(z)) > 0 if =(z) > 0 and

=(ul(z)) < 0 if =(z) < 0. For ε ∈ R \ {ε1, . . . , εK}, we have u′l(ε) = 1 +
∑K
k=1

λlk
(ε−εk)2 > 0 so that ul

is increasing on (−∞, ε1) ∪ (ε1, ε2) ∪ · · · ∪ (εK ,+∞). As ul(ε) −→
ε→−∞

−∞ and ul(ε) −→
ε→ε1,ε<ε1

+∞, ul

has exactly 1 zero in (−∞, ε1) by the intermediate value theorem. The same argument shows that there
is exactly one zero in each interval (εk, εk+1) and in the interval (εK ,+∞). So ul exactly K + 1 zeros.
Therefore, g has more than K + 1 poles, which concludes the proof of the lemma.

Suppose ∆ is a hybridization function associated to a bath of finite dimension and which is solution
to the IPT-DMFT equations. That is, there exist K ≥ 1, a1, . . . , aK > 0 and ε1 < · · · < εK such that

∆(z) =

K∑
k=1

ak
z − εk

.

Let Σ be the self-energy given by the IPT impurity solver, see Proposition 3.2.18. We have

Σ(z) = U2
∑

1≤k1,k2,k3≤K′

a′k1,k2,k3

z − ε′k1
− ε′k2

− ε′k3

and

a′k1,k2,k3
=
(

1 + e−β(ε′k1
+ε′k2

+ε′k3
)
) 3∏
i=1

1−∆′(ε′ki)

1 + e
−βε′ki

> 0,

where ε′1 < · · · < ε′K′ are the poles of the rational function (z −∆(z))−1. The number of poles is exactly
K+ 1 and the latter are real numbers, see the proof of Lemma 3.4.1, so that K ′ = K+ 1. Since U > 0 by
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assumption, Σ has more than K + 1 poles (we do not need a better estimation of the number of poles).
So we can write

Σ(z) = U2
K′′∑
k=1

a′′k
z − ε′′k

,

with K ′′ ≥ K + 1, a′′k > 0 and ε1 < · · · < εK′′ . As ∆ is assumed to be a solution to the IPT-DMFT
equations, it reads

∆(z) = W
(
z −H0

⊥ − Σ(z)
)−1

W †.

Applying Lemma 3.4.1 to the matrix-valued rational function
(
z −H0

⊥ − Σ(z)
)−1

, we know that this
matrix-valued rational function has more than K ′′+ 1 poles, hence more than K + 2 poles. Now, W 6= 0
since we have eliminated the limit cases described in Proposition 3.2.12, hence ∆ also has more than
K + 2 poles. As K is by definition the number of poles of ∆, it is impossible and ∆ cannot be a solution
to the IPT-DMFT equations.

3.4.4 Proof of Proposition 3.3.6 (Bath Update map)

Let Σp ∈ Sp, for 1 ≤ p ≤ P , and let Cp ∈ S2Lp(C) and µp ∈M(R,S+
2Lp

(C)) be such that for all z ∈ C+,

Σp(z) = Cp +
∫
R
dµp(ε)
z−ε . Since for all 1 ≤ p ≤ P , −Σp : C+ → C2Lp×2Lp is a Pick matrix,

−
⊕
q 6=p

Σq : C+ → C2(L−Lp)×2(L−Lp)

is a Pick matrix. As H0
p is Hermitian, we have for all z ∈ C+,

=

z −H0
p −

⊕
q 6=p

Σq(z)

 = =(z)−
⊕
q 6=p

=(Σq(z)) ≥ =(z) > 0,

where M1 ≥M2 means that M1 −M2 is a positive semidefinite matrix. Moreover, if =(M) > 0, then M
is invertible. Thus z−H0

p −
⊕

q 6=j Σq(z) is invertible and ∆p(z) is well defined. As =(M) > 0 if and only

if =(M−1) < 0, and as the congruence preserves the sign of the imaginary part, we have =(∆p(z)) ≤ 0
for all z ∈ C+, so that −∆p is a Pick matrix. To show formula (3.49), we will make use of the results on
Pick functions stated in Section 3.3.1. As µq, the Nevanlinna-Riesz measure of Σq, is finite for 1 ≤ q ≤ P ,
we have for x ∈ C2Lq , that the positive Borel measure µxq defined as the Nevanlinna-Riesz measure of the

Pick function z 7→ −〈x,Σq(z)x〉, is also a finite positive measure. Then, for x ∈ C2Lq and y ≥ 1,∣∣∣∣〈x, ∫
R

dµq(ε)

iy − ε x
〉∣∣∣∣ =

∣∣∣∣∫
R

dµxq (ε)

iy − ε

∣∣∣∣ ≤ ∫
R

dµxq (ε)

|iy − ε| ≤
∫
R
dµxq <∞.

This coarse upper bound is enough to ensure that

iy∆p(iy) = iyWp

iy −H0
p −

⊕
q 6=p

Σq(iy)

−1

W †p

= Wp

1− 1

iy

H0
p +

⊕
q 6=p

(
Cq +

∫
R

dµq(ε)

iy − ε

)−1

W †p

−→
y→+∞

WpW
†
p .

This gives the expansion ∆p(iy) =
WpW

†
p

iy
+ o

(
1

y

)
, as y goes to +∞. By Theorem 3.3.2, it follows

that the Nevanlinna-Riesz measure of −∆p, denoted by νp, is finite, and its mass is precisely the quantity
W †pWp. Thus the Nevanlinna-Riesz representation of −∆p reads

−∆p(z) = az + b−
∫
R

dνp(ε)

z − ε ,

for some a ∈ S+
2Lp

(C) and b ∈ S2Lp(C). Now, because of the aforementioned expansion, we must have
a = b = 0, which concludes the proof.
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3.4.5 Proof of Proposition 3.3.8 (IPT map)

Let ν ∈ P(R), and define the associated hybridization function ∆(z) = W †pWp

∫
R
dν(ε)
z−ε . We first establish

the following lemma, which we will use several times in our analysis.

Lemma 3.4.2. Let c ∈ R, µ0 ∈M+(R). For z ∈ C+, we set

f(z) =

∫
R

dµ0(ε)

z − ε and g(z) =
1

z − c− f(z)
.

Then −g is a Pick function and its Nevanlinna-Riesz representation reads g(z) =
∫
R
dµ(ε)
z−ε with µ ∈ P(R).

In particular, µ has finite moments of order less than or equal to 2, given by

m0(µ) = 1 (µ is a probability measure), m1(µ) = c and m2(µ) = µ0(R) + c2.

Proof. The result follows from the expansion of the function g(z) when z = iy, y → +∞ and Theo-
rem 3.3.2. One has

g(iy) =
1

iy

1

1− c
iy −

f(iy)
iy

.

Since f(iy) =
µ0(R)

iy
+ o

(
1

y

)
, we have

g(iy) =
1

iy

1

1− c
iy −

µ0(R)
(iy)2 + o

(
1
y2

) =
1

iy

(
1 +

c

iy
+
µ0(R) + c2

(iy)2
+ o

(
1

y2

))

=
1

iy
+

c

(iy)2
+
µ0(R) + c2

(iy)3
+ o

(
1

y3

)
.

Using again Theorem 3.3.2, we obtain the desired result.

We apply Lemma 3.4.2 with c = 0 and f = ∆. It follows that there exists ξ ∈ P(R) satisfying (3.53).

Then, following equations (3.54)-(3.56), set ξ̃(dε) =
ξ(dε)

1 + e−βε
, and µ̃ = ξ̃ ∗ ξ̃ ∗ ξ̃. We must verify that,

setting µ(dε) = (1+e−βε)µ̃(dε), µ is indeed a positive finite measure, so that the self-energy Σ associated
to the measure µ belongs to SIPT

p .
The multiplication by positive functions and the convolution preserves positivity, so µ is a positive

measure. Moreover, we have

µ(R) =

∫
R3

(
1 + e−β(ε1+ε2+ε3)

)
dξ(ε1)dξ(ε2)dξ(ε3)

(1 + e−βε1)(1 + e−βε2)(1 + e−βε3)
≤
∫
R3

dξ(ε1)dξ(ε2)dξ(ε3) = 1. (3.66)

Thus µ is finite, and the map F IPT is well defined. To prove that this map is actually continuous
with respect to the weak topology of measures, we need to establish Lemma 3.4.3. This result states
the continuity of the map M+(R) 3 µ0 7→ µ ∈ P(R) defined in Lemma 3.4.2, which is central in the
IPT-DMFT equations. Note that it holds

∀z ∈ C+,

∫
R

dµ(ε)

z − ε =
1

z − c−
∫
R
dµ0(ε)
z−ε

. (3.67)

Lemma 3.4.3. The map Φ : M+(R) 3 µ0 7→ µ ∈ P(R) defined in Lemma 3.4.2 is weakly continuous.
More precisely, the following stronger result holds true: if (µn0 )n∈N converges weakly to µ0 in M+(R),
then W2(Φ(µn0 ),Φ(µ)) −→

n→∞
0, where W2 is the Wasserstein distance of order 2.

Proof. Let (µn0 )n∈N ⊂M+(R) converging weakly to µ0 inM+(R), µn := Φ(µn0 ) and µ := Φ(µ0). In view
of Lemma 3.4.2, µn has finite moments of orders 1 and 2, given by m1(µn) = c and m2(µn) = µn0 (R)+ c2.

As µn0 converges weakly to µ0, we have
∫
R fdµ

n
0 →

∫
R fdµ0 for all f ∈ C0

b (R). Taking f ≡ 1, we get
µn0 (R) =

∫
R dµ

n
0 −→
n→∞

∫
R dµ0 = µ0(R). Hence, m2(µn) = µn0 (R) + c2 −→

n→∞
µ0(R) + c2 = m2(µ).

Now, for all z ∈ C+, the function R 3 ε 7→ 1

z − ε ∈ C is also bounded and continuous. Thus, we can

pass to the limit in formula (3.67):∫
R

dµn(ε)

z − ε =
1

z − c−
∫
R
dµn0 (ε)
z−ε

−→
n→∞

1

z − c−
∫
R
dµ0(ε)
z−ε

=

∫
R

dµ(ε)

z − ε . (3.68)
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This can be extended to complex numbers z ∈ C\R by taking the complex conjugate of the limit (3.68).

Let A be the algebra generated by the functions R 3 ε 7→ 1

z − ε ∈ C for z ∈ C \ R. It is known that

A is dense in C0
0(R) (this can be shown using Helffer-Sjöstrand formula [28]). Together with (3.68), this

implies that for all f ∈ C0
0(R),

∫
R fdµ

n −→
n→∞

∫
R fdµ, i.e. that (µn)n∈N vaguely converges to µ. Since

R is locally compact and the µn’s are probability measures, the vague convergence is equivalent in this
case to the weak convergence. The map Φ is therefore weakly continuous. Since on the space of Borel
probability measures on R, W2-convergence is equivalent to weak convergence and the convergence of the
second moment [3, Section 7.1], the proof is complete.

Let us now prove that the impurity solver F IPT : P(R)→M+(R) is weakly continuous. Let (νn)n∈N ⊂
P(R) converging weakly to ν ∈ P(R). Define ξn ∈ P(R) and µn := F IPT(νn) as in Proposition 3.3.8, see
equation (3.53), as well as ξ ∈ P(R) and µ := F IPT(ν). We want to show that µn converges weakly to
µ. First, because of the definition of ξ through equation (3.53), and thanks to Lemma 3.4.3, we know
that W2(ξn, ξ) −→

n→∞
0. Moreover, using the same density argument as in the proof of Lemma 3.4.3, it is

sufficient to show that for all z ∈ C+, the following convergence holds:∫
R

dµn(ε)

z − ε −→
n→∞

∫
R

dµ(ε)

z − ε .

We have for z ∈ C+,∫
R

dµn(ε)

z − ε =

∫
R3

1

z − (ε1 + ε2 + ε3)

1 + e−β(ε1+ε2+ε3)

(1 + e−βε1)(1 + e−βε2)(1 + e−βε3)
dξn(ε1)dξn(ε2)dξn(ε3).

Let ψ(ε1, ε2, ε3) =
1

z − (ε1 + ε2 + ε3)

1 + e−β(ε1+ε2+ε3)

(1 + e−βε1)(1 + e−βε2)(1 + e−βε3)
, for (ε1, ε2, ε3) ∈ R3. Then,∣∣∣∣∫

R

dµn(ε)

z − ε −
∫
R

dµ(ε)

z − ε

∣∣∣∣ =

∣∣∣∣∫
R3

ψdξndξndξn −
∫
R3

ψdξdξdξ

∣∣∣∣
≤

∣∣∣∣∫
R3

ψdξndξndξn −
∫
R3

ψdξndξndξ

∣∣∣∣ (3.69)

+

∣∣∣∣∫
R3

ψdξndξndξ −
∫
R3

ψdξndξdξ

∣∣∣∣ (3.70)

+

∣∣∣∣∫
R3

ψdξndξdξ −
∫
R3

ψdξdξdξ

∣∣∣∣ . (3.71)

We now prove that the last term (3.71) goes to zero when n goes to ∞. The same arguments apply to
the other two terms, (3.69) and (3.70). The function ψ is smooth and a simple calculation shows that its
partial derivative with respect to ε1 is bounded by

|∂1ψ(ε1, ε2, ε3)| ≤ 1

|=(z)|2 +
2β

|=(z)| =: κz,β . (3.72)

Let ε2, ε3 ∈ R. Using the W2 convergence of ξn towards ξ, set πn the optimal coupling between these
two measures [53]. We have that∫

R
ψ(ε1, ε2, ε3)dξn(ε1) =

∫
R2

ψ(ε1, ε2, ε3)dπn(ε1, ε
′
1).

By Taylor’s Theorem and since ψ is continuously derivable, we have∫
R
ψ(ε1, ε2, ε3)dξn(ε1) =

∫
R2

ψ(ε′1, ε2, ε3)dπn(ε1, ε
′
1) +

∫
R2

∫ ε1

ε′1

(ε1 − t)∂1ψ(t, ε2, ε3)dtdπn(ε1, ε
′
1).

On the one hand, the first term is exactly
∫
R ψ(ε1, ε2, ε3)dξ(ε1) by definition of πn, and on the other

hand, using (3.72), we can bound the second term by∣∣∣∣∣
∫
R2

∫ ε1

ε′1

(ε1 − t)∂1ψ(t, ε2, ε3)dtdπn(ε1, ε
′
1)

∣∣∣∣∣ ≤ 1

2

∫
R2

|ε1 − ε′1|2‖∂1ψ‖∞dπn(ε1, ε
′
1)

≤ κz,β
2

∫
R2

|ε1 − ε′1|2dπn(ε1, ε
′
1)

=
κz,β

2
W2(ξn, ξ)2.
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Finally, the term (3.71) can be bounded by∣∣∣∣∫
R3

ψdξndξdξ −
∫
R3

ψdξdξdξ

∣∣∣∣ ≤ ∫
R2

∣∣∣∣∫
R
ψ(ε1, ·, ·)dξn(ε1)−

∫
R
ψ(ε1, ·, ·)dξ(ε1)

∣∣∣∣ dξdξ
=

∫
R2

∣∣∣∣∣
∫
R2

∫ ε1

ε′1

(ε1 − t)∂1ψ(t, ε2, ε3)dtdπn(ε1, ε
′
1)

∣∣∣∣∣ dξ(ε2)dξ(ε3)

≤
∫
R2

κz,β
2
W2(ξn, ξ)2dξ(ε2)dξ(ε3) =

κz,β
2
W2(ξn, ξ)2 −→

n→∞
0.

This shows that the map F IPT is weakly continuous. It remains to prove that the map DIPT
p 3 ∆ 7→ Σ ∈

SIPT
p defined by (3.53)-(3.57) coincides on the set of discrete probability measures with finite support

with the map defined in Proposition 3.2.18.
Let ∆ ∈ DIPT

p with a Nevanlinna-Riesz measure of the form ν =
∑K
k=1 akδεk , where ak > 0,

∑
ak =

W †pWp and ε1 < · · · < εK . It follows that the rational function (z −∆(z))−1 is of the form
∑K+1
k=1

a′k
z−ε′k

(see the proof of Lemma 3.4.1). This means by (3.53) that ξ =
∑K+1
k=1 a′kδε′k , and the ε′k’s are the zeros

of the rational function z −∆(z), so that the residues are given by a′k = (1−∆′(ε′k))−1. The self-energy
Σ given by (3.57) then reads for all z ∈ C+,

Σ(z) = U2

∫
R3

1 + e−β(ε1+ε2+ε3)

(1 + e−βε1)(1 + e−βε2)(1 + e−βε3)

dξ(ε1)dξ(ε2)dξ(ε3)

z − (ε1 + ε2 + ε3)

= U2
K+1∑

k1,k2,k3=1

1 + e−β(ε′k1
+ε′k2

+εk3
)

(1 + e−βε
′
k1 )(1 + e−βε

′
k2 )(1 + e−βε

′
k3 )

a′k1
a′k2

a′k3

z − (ε′k1
+ ε′k2

+ ε′k3
)

= U2
K+1∑

k1,k2,k3=1

a′k1,k2,k3

z − (ε′k1
+ ε′k2

+ ε′k3
)
,

where a′k1,k2,k3
is given by (3.42). This complies with the result stated in Proposition 3.2.18.

Finally, since the set of discrete probability measures with finite support is dense in the set of prob-
ability measures P(R) for the weak topology and since F IPT is weakly continuous, F IPT is the only
continuous extension of the IPT map defined in Proposition 3.2.18 for a finite-dimensional bath.

3.4.6 Continuity of the IPT-DMFT map

The following result is central to prove the existence of a fixed point to the DMFT equations.

Theorem 3.4.4 (Continuity of the IPT-DMFT map). The IPT-DMFT map FDMFT is weakly continuous
on P(R). More precisely, the following stronger results holds true: if (νn)n∈N converges weakly to ν, then

W2

(
FDMFT(νn), FDMFT(ν)

)
−→
n→∞

0,

where W2 is the Wasserstein 2-distance.

We have proven in the previous section the continuity of the map F IPT. In order to prove the continuity
of F SC, we need to adapt Lemma 3.4.3 to equation (3.52). Let µ ∈M+(R). Applying Theorem 3.3.2 to
the measure µ, and using the definition (3.52) of the hybridization function ∆ associated to F SC(µ), we
obtain

∆(iy) =
1

iy
W

(
1− H0

⊥
iy
− 1

iy
U2

∫
R

dµ(ε)

iy − ε

)−1

W †

=
1

iy
W

(
1− H0

⊥
iy
− 1

iy

(
U2µ(R)

iy
+ o

(
1

y

)))−1

W †

= W

[
1

iy
+

H0
⊥

(iy)2
+

(H0
⊥)2 + U2µ(R)

(iy)3

]
W † + o

(
1

y3

)
.

It follows that, when y → +∞, we have the expansion∫
R

dF SC(µ)(ε)

iy − ε =
1

W †pWp

∆(iy) =
1

iy
+

s1

(iy)2
+
s2(µ)

(iy)3
+ o

(
1

y3

)
, (3.73)
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with s1
p and s2

p(µ) given by

s1 =
WH0

⊥W
†

W †pWp

, (3.74)

s2(µ) =
W
(
(H0
⊥)2 + U2µ(R)

)
W †

W †pWp

. (3.75)

In view of Theorem 3.3.2, this implies that ν := F SC(µ) has finite moments of orders 1 and 2, respectively
given by m1(ν) = s1 and m2(ν) = s2(µ). The arguments in the proof of Lemma 3.4.3 can then be used
to show that the following result holds true.

Proposition 3.4.5. F SC :M+(R) → P(R) is weakly continuous. More precisely, if (µn)n∈N converges
weakly to µ in M+(R), then W2(F SC(µn), F SC(µ)) −→

n→∞
0.

We are now in position to complete the proof of Theorem 3.4.4. Let (νn)n ⊂ P(R) converging
weakly to ν in P(R). Denoting by µn := F IPT(νn) and µ := F IPT(ν), we have shown in the proof of
Proposition 3.3.8 that µn converges weakly to µ inM+(R), see Section 3.4.5. Proposition 3.4.5 then shows
that W2(FDMFT(νn), FDMFT(ν)) = W2(F SC(µn), F SC(µ)) −→

n→∞
0. In particular, FDMFT(νn) converges

weakly to FDMFT(ν).

3.4.7 Proof of Theorem 3.3.9: existence of a fixed point

The existence of a fixed point to the IPT-DMFT map, that is a solution to the IPT-DMFT equations, is
a consequence of the following fixed point theorem [57].

Theorem 3.4.6 (Schauder-Singbal). Let E be a locally convex Hausdorff linear topological space, C a
nonempty closed convex subset of E, and F a continuous map from C into itself, such that F (C) is
contained in a compact subset of C. Then F has a fixed point.

Let us consider the vector space E =M(R) endowed with the Kantorovitch-Rubinstein norm ‖ · ‖0.
Recall that the latter is defined as

‖µ‖0 := sup

{∫
R
fdµ ; f ∈ Lip1, ‖f‖∞ ≤ 1

}
,

where Lip1 is the set of continuous functions on R with Lipschitz constant less than or equal to 1.
Let us then set C := P(R) = {µ ∈ E | µ ≥ 0,

∫
R dµ = 1}. Since E is a normed vector space on R, it

is a locally convex Hausdorff linear topological space, and C is obviously a non-empty convex subset of
E.

Besides, on the set of finite positive measures, weak convergence is equivalent to convergence for the
Kantorovitch-Rubinstein norm [9, Chapter 8.3]. We can thus work with the weak topology on C.

The fact that C is weakly closed means that P(R) is a weakly closed subset ofM(R). This result can
be found in [10, Section 3.2]. Moreover, we already proved in Theorem 3.4.4 that FDMFT : C → C was
weakly continuous.

To apply Schauder-Singbal’s theorem to our setting, it thus remains to show that FDMFT(C) is
relatively compact for the weak topology. This is in fact a consequence of Prokhorov’s Theorem [10,
Theorem 2.3.4].

Indeed, let ν ∈ FDMFT(C) and ν0 ∈ P(R), µ = F IPT(ν0) ∈ M+(R) such that ν = FDMFT(ν0) =
F SC(µ). As we have seen in the proof of Proposition 3.4.5, ν has finite moments of order 1 and 2, given
respectively by m1(ν) = s1 and m2(ν) = s2(µ), where s1 is defined by (3.74) and s2(µ) by (3.75). The
inequality (3.66) states that the mass of the measure µ is bounded by 1. Hence, m2(ν) = s2(µ) is bounded
independently on ν:

m2(ν) = s2(µ) ≤ c :=
W
(
(H0
⊥)2 + U2

)
W †

W †pWp

. (3.76)

This allows us to show that FDMFT(C) is tight. For η > 0, take K = [−a, a], with a ≥ 1 large enough so
that c/a2 ≤ η. Then for ν ∈ FDMFT(C), (3.76) holds and

ν(R \K) =

∫
R\K

ε2

ε2
dν(ε) ≤ 1

a2

∫
R\K

ε2dν(ε) ≤ 1

a2

∫
R
ε2dν(ε) =

m2(ν)

a2
≤ c

a2
≤ η.

Hence FDMFT(C) is tight. By Prokhorov’s Theorem, it is thus weakly relatively compact.
This concludes the proof of our main result.
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3.4.8 Proof of Proposition 3.3.10

Let ν0 ∈ P(R) and k ∈ 2N, and assume that ν0 has finite k-th moment, i.e.
∫
R |ε|kdν0(ε) < ∞. By

Theorem 3.3.2, the following expansion holds, with mk(ν0) ≥ 0:∫
R

dν0(ε)

iy − ε =
1

iy
+ · · ·+ mk(ν0)

(iy)k+1
+ o

(
1

yk+1

)
. (3.77)

Then define ∆0(z) = W †pWp

∫
R

dν0(ε)

z − ε and ξ by (3.53):∫
R

dξ(ε)

z − ε =
1

z −∆0(z)
.

This function can be asymptotically expanded to order k + 3 using (3.77).∫
R

dξ(ε)

iy − ε =
1

iy −W †pWp

(
1
iy + · · ·+ mk(ν0)

(iy)k+1 + o
(

1
yk+1

))
=

1

iy

(
1− W †pWp

iy

(
1

iy
+ · · ·+ mk(ν0)

(iy)k+1
+ o

(
1

(iy)k+1

)))−1

=
1

iy
+ · · ·+ mk+2(ξ)

(iy)k+3
+ o

(
1

yk+3

)
.

By Theorem 3.3.2, ξ has finite moments up to order k+2, which is even, denoted bym0(ξ) = 1, . . . ,mk+2(ξ).
Now let µ := F IPT(ν0), so that µ ∈ M+(R) is given by (3.56) in the statement of Proposition 3.3.8. In
particular, there exists Ck ∈ R+ such that∫

R
|ε|k+2dµ(ε) =

∫
R3

|ε1 + ε2 + ε3|k+2 1 + e−β(ε1+ε2+ε3)

(1 + e−βε1)(1 + e−βε2)(1 + e−βε3)
dξ(ε1)dξ(ε2)dξ(ε3)

≤
∫
R3

|ε1 + ε2 + ε3|k+2dξ(ε1)dξ(ε2)dξ(ε3)

≤
∫
R3

Ck
∑

1≤i1,i2,i3≤k+2
i1+i2+i3=k+2

|ε1|i1 |ε2|i2 |ε3|i3dξ(ε1)dξ(ε2)dξ(ε3)

= Ck
∑

1≤i1,i2,i3≤k+2
i1+i2+i3=k+2

∫
R
|ε1|i1dξ(ε1)

∫
R
|ε2|i2dξ(ε2)

∫
R
|ε3|i3dξ(ε3) <∞,

since for l ≤ k + 2,
∫
R |ε|ldξ(ε) < ∞. Thus µ has finite moments of order less than or equal to k + 2.

Finally, let ν := F SC(µ) = FDMFT(ν0). Equations (3.48) and (3.49) read

∆(z) = W †pWp

∫
R

dν(ε)

z − ε = W
(
z −H0

⊥ − Σ(z)
)−1

W †,

with Σ(z) = U2
∫
R
dµ(ε)
z−ε . By Theorem 3.3.2, we can expand

∫
R
dµ(ε)
iy−ε as y goes to +∞ and get

∆(iy) = W

(
iy −H0

⊥ − U2

(
m0(µ)

iy
+ · · ·+ mk+2(µ)

(iy)k+3
+ o

(
1

yk+3

)))−1

W †

= W †pWp

(
1

iy
+ · · ·+ mk+4(ν)

(iy)k+5

)
+ o

(
1

yk+5

)
.

This means that ∫
R

dν(ε)

iy − ε =
1

iy
+ · · ·+ mk+4(ν)

(iy)k+5
+ o

(
1

yk+5

)
,

which proves, by Theorem 3.3.2, that ν has finite moments up to order k + 4.
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Appendices

3.A Uniqueness theorem for an interpolation problem

The Nevanlinna-Pick Analytical Continuation Problem (ACP), which we will also call interpolation prob-
lem, has been studied in the beginning of the 20th century independently by Nevanlinna ([45], 1919)
and Pick ([49], 1915). The results presented in Section 3.A.1 are gathered in the book [63]. Many other
references address this problem, such as [20], [1], [55]. In Section 3.A.1, we set up the problem and then
give some results that are important to our analysis. Other important results on the ACP and charac-
terizations of the solutions are detailed in the references. For example, we will not discuss the question
of extremal solutions ([47], [58]), nor the use of Blaschke products ([63], [20], [46]). The approaches of
Nevanlinna and Pick are different, we chose here to focus on Nevanlinna’s approach.

3.A.1 Introduction and some general properties

The Nevanlinna-Pick Analytical Continuation Problem (ACP) can be stated as follows. Let (zn)n∈I be
a sequence of distinct points in the Poincaré upper-half-plane C+ and let (wn)n∈I be a sequence in C+.
We want to answer the following question.

Question 3.A.1. Is there an analytic function f : C+ → C+ interpolating the given values at the
prescribed points? In other words, we look for a Pick function f such that

∀n ∈ I, f(zn) = wn, (3.78)

where I is a (at most) countable set.

Without loss of generality, we can assume that I = {1, 2, . . .}. We denote by ACC+
(zn, wn)I the

set of solutions to this problem (we will omit the dependence on I unless when needed). Both sets
C+ and C+ are invariant under the action of the subset T of affine transformations of C+ given by
T = {τ : C+ → C+, z 7→ az + b, b ∈ R, a > 0}, and we have

∀τ1, τ2 ∈ T , ACC+
(τ1(zn), τ2(wn)) = τ2 ◦ACC+

(zn, wn) ◦ τ−1
1 . (3.79)

Moreover, question 3.A.1 can equivalently be stated in the unit disc instead of the upper-half-plane:

Question 3.A.2. Let (zn) and (wn) be sequences in the unit disc D = {z ∈ C, |z| < 1} and the closed
disc D respectively. Is there an analytic function f : D→ D such that ∀n ∈ I, f(zn) = wn ?

The reason for the equivalence between both formulations is simply the upper-half-plane can be
mapped to the unit disc through the Cayley transform, which is biholomorphic between these sets. The
Cayley transform W and its reciprocal W−1 are given by:

W : C\{−i} −→ C\{1} W−1 : C\{1} −→ C\{−i}
z 7→ z − i

z + i
z 7→ i

1 + z

1− z .

As the Cayley transform W is biholomorphic from C+ to D and maps the real line R to the unit
circle deprived of the point 1, we have the equivalence of the following statements, with F : C+ → C+,
(zn) ⊂ C+, (wn) ⊂ C+, f =W ◦ F ◦W−1 : D→ D, z̃n =W(zn) ∈ D and w̃n =W(wn) ∈ D.

∀n ≥ 1, F (zn) = wn ⇐⇒ ∀n ≥ 1, f(z̃n) = w̃n.

In other words, denoting by ACD(zn, wn) the set of solutions to Question 3.A.2, we have

ACD(W(zn),W(wn)) =W ◦ACC+
(zn, wn) ◦W−1. (3.80)
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As a matter of fact, we can answer Question 3.A.2 when the sequence (wn) is constant and of modulus
1, as a direct consequence of the maximum modulus principle.

Lemma 3.A.3. Given C ∈ D \ D, ACD(zn, C) = {C}.
Combined with equation (3.80), we have a first statement about the set of solutions ACC+

to the
interpolation problem (3.78).

Corollary 3.A.4. Given C ∈ R, ACC+
(zn, C) = {C}.

The next definition introduces the functions ba (the notation suggests Blaschke products, see [47] and
[20]), which will be useful for our analysis of ACD(zn, wn).

Definition 3.A.5. Let a ∈ D. Define for z ∈ D, ba(z) = z−a
1−az ∈ D.

These functions are in fact biholomorphic from D to itself and ba only vanishes in a ∈ D. This zero
is of order 1. The function ba can actually be extended to the closed disc D, and we will also denote this
extension ba. Considering our interpolation problem, we notice the following. If f is a solution to the
interpolation problem stated in question 3.A.2, we have f(z1) = w1, with |w1| ≤ 1. If the modulus of
w1 is 1, then f is constant because of the maximum modulus principle. Suppose this is not the case and
define the function f (1) by

f (1)(z) =
bw1

(f(z))

bz1(z)
. (3.81)

f (1) is then well-defined on D, because the only zero of bz1 is z1 and is of order 1, and z1 is also a zero
of order at least 1 of bw1

◦ f . One can check that f (1) takes values in D, so that f (1) is analytic from D
to D if and only if f = b−1

w1
◦ (bz1f

(1)) is analytic from D to D.

Now suppose |I| ≥ 2 and define for all n ∈ I \ {1}, w(1)
n :=

bw1
(wn)

bz1 (zn) . We notice that f (1)(zn) =
bw1

(f(zn))

bz1 (zn) =
bw1

(wn)

bz1 (zn) = w
(1)
n . This means that f (1) is the solution to the Nevanlinna-Pick interpolation

problem

g(zn) = w(1)
n , ∀n ∈ I \ {1}. (3.82)

We have proven the following lemma, which is the main element of the Schur interpolation algorithm
[25].

Lemma 3.A.6 (Schur iteration). Assume |I| ≥ 2 and w1 ∈ D. We then have the following equivalence:

f ∈ ACD(zn, wn)I ⇐⇒ f (1) : z 7→ bw1
(f(z))

bz1(z)
∈ ACD(zn, w

(1)
n )I\{1}.

In other words,

ACD(zn, wn)I = b−1
w1
◦
(
bz1 ·ACD(zn, w

(1)
n )I\{1}

)
.

Both previous lemmas give the intuition about the following theorem, which can be found in any
reference dealing with the issue of Nevanlinna-Pick interpolation, e.g. [63], [20], [46]. Refinements of this
result and characterizations of the solutions are detailed in the references given at the beginning of this
section.

Theorem 3.A.7. Let (zn)n≥1 and (wn)n≥1 be sequences in the unit disc D and the closed disc D respec-
tively. Define by induction, for 1 ≤ l and k > l,

w
(l)
k :=

w
(l−1)
k − w(l−1)

l

1− w(l−1)
l w

(l−1)
k

1− zlzk
zk − zl

=
b
w

(l−1)
l

(w
(l−1)
k )

bzl(zk)
, (3.83)

with w
(0)
k = wk for k ≥ 1.

There are three distinct cases.

1. If there exists k ≥ 1 such that |w(k−1)
k | > 1, then there is no solution to the interpolation prob-

lem (3.78).

2. Else, if there exists K ≥ 1 such that for all 1 ≤ k < K, |w(k−1)
k | < 1, |w(K−1)

K | = 1 and for all

l ≥ K, w
(K−1)
l = w

(K−1)
K , then there exists a unique solution to the interpolation problem (3.78).

3. Else, we have for all k ≥ 1, |w(k−1)
k | < 1 and there is either 1 or infinitely many solutions to the

interpolation problem.
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3.A.2 A uniqueness result for ACPs with a rational solution

In our mathematical framework, we need the following uniqueness theorem (Theorem 3.A.8). In this
section, we are tackling the uniqueness of the interpolation problem (3.78), in the case where we have
already found one solution of some specific form. We assume that we have found a solution f such that its
Nevanlinna-Riesz measure in the integral representation (3.45) is a finite sum of weighted Dirac measures,

that is f is a rational function. This means that we have f(z) = αz+C+
∑K
k=1

ak
z−εk , with α ≥ 0, C ∈ R,

K ∈ N, the ak’s are negative numbers and the εk’s are distinct real numbers. The following theorem
states that it is then the only solution to the interpolation problem (3.78).

Theorem 3.A.8. Let f : C+ → C+ be a Pick function such that its Nevanlinna-Riesz measure µ is a
finite sum of Dirac measures: there exist K ∈ N, a1, . . . , aK < 0 and distinct real numbers ε1, . . . , εK
such that

µ =

K∑
k=1

akδεk .

Then, if f is a solution to an interpolation problem ACC(zn, wn)I with |I| ≥ K + 2, this problem has no
other solution.

Proof. We prove this result by strong induction on K, for K ∈ N. If K = 0, the expression of f reads
f(z) = αz + C, with α ≥ 0 and C ∈ R. Now suppose f ∈ ACC+

(zn, wn). Then for all n ∈ I, we have
αzn + C = wn, so that

ACC+
(zn, wn) = ACC+

(zn, αzn + C).

If α = 0, then ACC+
(zn, C) = {C} by corollary 3.A.4. Else, we extend continuously f to C+ into the

affine transformation f̃ ∈ T and we have

ACC+(zn, wn) = f̃ ◦W−1 ◦ACD(W(zn),W(zn)) ◦W.

Denoting by z̃n = w̃n = W(zn), we find that for all n ∈ I \ {1}, w̃(1)
n = 1. Hence by Theorem 3.A.7,

ACD(W(zn),W(zn)) = {z 7→ z} and ACC+
(zn, wn) = {f}.

Now assume the result holds for l ≤ K and take f such that its Nevanlinna-Riesz measure is a sum
of K + 1 Dirac measures. Now consider an ACP ACC(zn, wn)I with |I| ≥ K + 3 to which f is a solution,
namely f(zn) = wn and there exist α ≥ 0, C ∈ R, a1, . . . , aK+1 < 0 and real numbers ε1 < · · · < εK+1 ,
such that for all z ∈ C+,

f(z) = αz + C +

K+1∑
k=1

ak
z − εk

.

We start by making use of the property (3.79) to simplify the problem. It is possible to chose two

affine transformations τz1 and τ̌z1 in T such that, setting f̃ = τ̌z1 ◦ f ◦ τ−1
z1 , we have

f̃(z) = C̃ + α̃z +

K+1∑
k=1

ãk
z − ε̃k

,

where the parameters C̃, α̃, ãk, and ε̃k satisfy the same properties as their counterparts without the
tildes, and such that

τz1(z1) = i, <(f̃(z̃1)) = 0 and

K+1∑
k=1

−ãk
1 + ε̃2

k

= 1. (3.84)

Using (3.79), we have

ACC+
(zn, wn) = τ̌−1

z1 ◦ACC+
(τz1(zn)︸ ︷︷ ︸

z̃n

, (τ̌z1 ◦ f ◦ τ−1
z1 )︸ ︷︷ ︸

f̃

(τz1(zn))) ◦ τz1 .

For the remaining of the proof, we will then focus on ACC+
(z̃n, f̃(z̃n)). We will omit the tildes for

the sake of simplicity, and assume that z1 = i and that (3.84) holds. With that being said, notice

that =(f(z1)) = =(f(i)) = α +
∑K+1
k=1

−ak
1+ε2k

> 0, hence W(f(z1)) ∈ D. Therefore, using Lemma 3.A.6

equation (3.80), we have

ACD(W(zn),W(f(zn)))I = b−1
W(f(z1)) ◦

(
bz1 ·ACD(W(zn),W(f(zn))(1))I\{1}

)
.
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and
ACD(W(zn),W(f(zn))(1))I\{1} =W ◦ACC+

(
zn,W−1([W(f(zn))](1))

)
I\{1}

◦W−1.

We now compute g(z) = W−1 ◦ [W ◦ f ](1)(z), for z ∈ C+ \ {i}. Since W(z1) = W(i) = 0 and z 6= i,
we have bW(z1)(W(z)) =W(z) 6= 0 and g(z) is well defined. The computation reads

g(z) = i
(f(z1) + i) f(z1)−f(z)

z+i + (f(z1) + i) f(z)−f(z1)
z−i

(f(z1) + i) f(z1)−f(z)
z+i − (f(z1) + i) f(z)−f(z1)

z−i

.

We used the fact that sinceW(f(z1))W(f(z)) ∈ D, it is not equal to 1 and that 1
2i (f(z)+i)|(f(z1)+i)|2 6=

0. Now, realize that, since z1 = i, we have

f(z)− f(z1)

z − i = α+

K+1∑
k=1

1

εk − i
ak

z − εk
,

and similarly

f(z1)− f(z)

z + i
= −α−

K+1∑
k=1

1

εk + i

ak
z − εk

,

so that

g(z) = −
α(=(f(z1)) + 1) +

∑K+1
k=1 =

(
f(z1)+i
εk+i

)
ak
z−εk

α<(f(z1)) +
∑K+1
k=1 <

(
f(z1)+i
εk+i

)
ak
z−εk

, (3.85)

which holds for z = i as well. As we set <(f(z1)) = 0, we have

<
(
f(z1) + i

εk + i

)
=
=(f(z1)) + 1

1 + ε2
k

> 0 and =
(
f(z1) + i

εk + i

)
= εk

=(f(z1)) + 1

1 + ε2
k

.

Multiplying the numerator and denominator in (3.85) by 1
=(f(z1))+1

∏K+1
k=1 (z − εk), we end up with

g(z) =
P (z)

Q(z)
, with

P (z) := α

K+1∏
k=1

(z − εk) +

K+1∑
k=1

εk
ak

1 + ε2
k

K+1∏
l=1,l 6=k

(z − εl),

and

Q(z) :=

K+1∑
k=1

−ak
1 + ε2

k

K+1∏
l=1,l 6=k

(z − εl).

We have Q(εk) = −ak
1+ε2k

∏K+1
l=1,l 6=k(εk − εl) 6= 0 by hypothesis on the εk’s, so that

Q(z) = 0 ⇐⇒
K+1∑
k=1

−ak
1+ε2k

z − εk
= 0,

hence Q admits exactly K distinct roots ε′k ∈ (εk, εk+1) ⊂ R by the intermediate value theorem (as in
the proof of Lemma 3.4.1), and it is unitary due to (3.84). The partial fraction decomposition of g finally
reads

g(z) = α′z + C ′ +

K∑
k=1

a′k
z − ε′k

,

where
α′ = α,

C ′ = lim
y→∞

g(iy)− iα′y = (1− α)

L+1∑
k=1

εk
ak

1 + ε2
k

∈ R,

a′k = lim
y→0+

iyg(ε′k + iy)

=

∏K
l=1,l 6=k

(
ε′k − εl
ε′k − ε′l

)
︸ ︷︷ ︸

>0

 (ε′k − εk)(ε′k − εL+1)︸ ︷︷ ︸
<0

(α+ 1)︸ ︷︷ ︸
>0

< 0.

123



This computation shows that the Nevanlinna-Riesz measure of g is a sum of K Dirac measures as
described in the statement of the theorem. It is a solution to the Analytical Continuation Problem

ACC+

(
zn,W−1([W(f(zn))](1)])

)
I\{1}

,

where |I \ {1}| ≥ K + 2 by assumption. By the induction hypothesis, g is the only solution to this ACP,
and therefore f is the only solution to the ACP ACC+

(wn, zn)I .

3.B Paramagnetic IPT-DMFT equations

In this appendix, we detail the spin independence of the paramagnetic IPT-DMFT equations.
As detailed in Remark 3.2.9, the Hamiltonian ĤAI commutes with the total spin operator ŜAI . More

precisely, HAI is ŜAI -invariant, and in the decomposition

HAI = H↑ ⊕H↓, Hσ = Span

(
|∅〉 ⊗ · · · ⊗ |∅〉 ⊗ |σ〉

m-th

⊗ |∅〉 ⊗ · · · ⊗ |∅〉,m ∈ Λ t [[1, B]]

)
(3.86)

the total spin operators reads ŜAI = 1↑ ⊕ (−1↓):

ŜAI =

(
1 0
0 −1

)
.

Writing in this decomposition H0 = H0
↑ ⊕H0

↓ , we then have

G0(z) = (z −H0
↑ )
−1 ⊕ (z −H0

↓ )
−1.

Since no magnetic field is included in the model, H0
↑ and H0

↓ act the same way on their respective domains:

denoting by F̂ ∈ L(HAI) the spin flip isomorphism defined by linearity with ∀m ∈ Λt [[1, B]],∀σ ∈ {↑, ↓}

F̂

(
|∅〉 ⊗ · · · ⊗ |∅〉 ⊗ |σ〉

m-th

⊗ |∅〉 ⊗ · · · ⊗ |∅〉
)

= |∅〉 ⊗ · · · ⊗ |∅〉 ⊗ |σ̄〉
m-th

⊗ |∅〉 ⊗ · · · ⊗ |∅〉,

we have

H0
↑ = F̂↑,↓H

0
↓ F̂↓,↑.

Now in the impurity-spin decomposition

H = H↑,imp ⊕H↑,bath ⊕H↓,imp ⊕H↓,bath (3.87)

Hσ,imp = Span

(
|∅〉 ⊗ · · · ⊗ |∅〉 ⊗ |σ〉

i-th

⊗ |∅〉 ⊗ · · · ⊗ |∅〉, i ∈ Λ

)
(3.88)

Hσ,bath = Span

(
|∅〉 ⊗ · · · ⊗ |∅〉 ⊗ |σ〉

k-th

⊗ |∅〉 ⊗ · · · ⊗ |∅〉, k ∈ [[1, B]]

)
(3.89)

we have ŜAI = 1⊕ 1⊕ (−1)⊕ (−1) and N̂imp = 1⊕ 0⊕ 1⊕ 0 :

ŜAI =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , N̂imp =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


and we have for the impurity orthogonal restriction of the non-interacting Green’s function G0

imp:

G0
imp(z) =

(
z −H0

↑,imp −∆↑(z)
)
⊕
(
z −H0

↓,imp −∆↓(z)
)

Indeed, as it is the case for the non-interacting Hamiltonian and the non-interacting Green’s function,
∆↑ acts similarly as ∆↓ on their respective domain, and are related by conjugation with the spin flip
operator

∆↑ = F̂↑,↓∆↓F̂↓,↑
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With that being said, in the IPT approximation outlined in this document, we have for n ∈ Z,

ΣMimp,n = ΣM↑,imp,n ⊕ ΣM↓,imp,n,

with for all σ ∈ {↑, ↓},

ΣMσ,imp,n = U2

∫ β

0

eiωnτ

(
1

β

∑
n′∈Z

(
iωn′ −∆σ(iωn′)

−1
))3

dτ.

And indeed, we have the conjugation relation

ΣM↑,imp,n = F̂↑,↓Σ
M
↓,imp,nF̂↓,↑.

These last equations show that the impurity-spin orthogonal restrictions of the Matsubara self-energy
Fourier coefficients are copies one of another. Since we assume that the partition P is in singletons, it
follows that |Λ| = 1 and dim(Hσ,imp) = 1, so that using the bases Bσ,imp given by

∀σ ∈ {↑, ↓}, Bσ,imp = {|σ〉 ⊗ |∅〉 ⊗ · · · ⊗ |∅〉},

we have for all n ∈ Z,
matB↑,imp

(ΣM↑,imp,n) = matB↓,imp
(ΣM↓,imp,n) := Σn.

Finally, we have for z ∈ C+,

matB↑,imp
(∆↑(z)) = matB↓,imp

(∆↓(z)) =

B∑
k=1

VkV
†
k

z − εk
,

so that we indifferently refer to ∆(z) by abuse of notation.

Bibliography

[1] M. B. Abrahamse. The Pick interpolation theorem for finitely connected domains. Michigan Math-
ematical Journal, 26(2):195–203, January 1979. Publisher: University of Michigan, Department of
Mathematics.

[2] Naum I. Akhiezer. The Classical Moment Problem and Some Related Questions in Analysis. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 2020.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
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Chapter 4

A mathematical analysis of the
discretized IPT-DMFT equations.
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In the previous chapter, we have proven the existence of a solution to the IPT-DMFT equations. In
view of practical purposes, this result needs to be adapted to a set of discretized equations on which
realistic computations can be performed. In this chapter, we are interested in the discretization of the
DMFT functional equations based on the restriction of the hybridization function and self-energy to
the collection of points in the upper half-plane z = iωn, where ωn = (2n+ 1)π/β is the n-th Matsubara
frequency. After a presentation of these equations, we start by proving the existence of a solution to these
equations, which is an adaptation of [3, Theorem 3.9] to this setting. We then show numerically, using an
iterative scheme for the Hubbard dimer based on these equations, that global uniqueness is guaranteed
for small and large on-site repulsion U. In accordance with these numerical insights, we finally prove
uniqueness of the solution for small on-site repulsion U or small hopping parameter T.

4.1 IPT-DMFT on the Matsubara’s frequencies

The success of the Dynamical Mean-Field Theory (DMFT) in the strongly correlated condensed matter
community lies in its ability to provide with good approximations of local Green’s functions for very
large systems [7]. As already mentioned in the previous chapter, the computationally expensive part
in a DMFT algorithm is the impurity solver step, which provides for each Anderson Impurity Model
(AIM) (labeled by p ∈ P) the impurity self-energy Σimp,p given the hybridization function ∆p and the
impurity parameters (Gp, Tp, Up), as detailed in [3, Section 2.4]. Most of practical implementations of
DMFT are based on the translation-invariant setting [3, Remark 2.11], for which the set of equations
scales down to only two equations in the translation invariant quantities (∆,Σ): in this setting, only one
impurity model remains, which reduces the computational cost. Still, the impurity solver is the practical
bottleneck of a DMFT computation (even ground-state computations are known to be very expensive
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[2]): accurate computations are performed using Continuous Time Quantum Monte Carlo (CTQMC)
[10, 17, 22, 23, 13, 19], which are exact up to statistical noise. Nevertheless, their computational price
is too high and for specific applications such as moiré heterobilayers [21], computations are performed
using approximate solvers. One of them is the Iterated Perturbation Theory (IPT) solver, which we are
interested in in this chapter.

IPT is one of the most computationally cheap (and one of the least accurate) solvers [6, 24, 7].
We have studied its analytical properties in [3], in the single-site translation-invarariant paramagnetic
setting: recall that in this setting, for a given inverse temperature β, on-site repulsion U ∈ R and hopping
parameter T ∈ R, the IPT-DMFT equations read

∀z ∈ C+, ∆(z) = W
(
z −H0

⊥ − Σ(z)
)−1

W † (4.1)

Σ = IPTβ(U,∆) (4.2)

where IPTβ(U,∆) is the IPT solver introduced in [3, Section 2.5.2], −∆,−Σ are analytic functions from
C+ to C+, and H0

⊥ ∈ SL−1(R) and W † ∈ RL−1 are given by

TAdj =

(
0 W
W † H0

⊥

)
,

with Adj the adjacency matrix of the original Hubbard graph GH = (Λ, E), |Λ| = L.
We have shown in particular that this solver is well-defined for hybridization functions representing

finite dimensional baths [3, Proposition 2.18], and that it extends continuously (for the appropriate
distance) to the closure if this set, which represents thermodynamic limits of finite dimensional baths [3,
Proposition 3.6]. Nevertheless, the very quantities ∆,Σ this solver is dealing with are functions defined
on the whole upper half-plane: any practical computational scheme requires discretizations of these two
objects.

In this chapter, we focus on the set of equations obtained when discretizing ∆ and Σ by their values
on a finite subset of the so-called Matsubara’s frequencies (iωn)n∈N where ωn = (2n + 1)πβ [3, Section

2.5.1]. More precisely, we are interested in the following discretization: for given ∆,Σ, we construct the
following finite dimensional objects

(∆n)n∈[[0,Nω]] , −∆n = −∆(iωn) ∈ C+ (4.3)

(Σn)n∈[[0,Nω]] , − Σn = −Σ(iωn) ∈ C+ (4.4)

where Nω ∈ N is the Matsubara’s frequency cutoff. Note that we extend this definition to negative
Matsubara’s frequencies with for all n ∈ [[0, Nω]]

∆−(n+1) = ∆n ∈ C+, Σ−(n+1) = Σn ∈ C+ (4.5)

in accordance with the conventional extension of a Pick function to the lower half-plane [8] (∀z ∈
C−, f(z) = f(z)) and the fact that ω−(n+1) = −ωn. The set (iωn)n∈[[0,Nω]] of points in C+, represented
in Figure 1, is motivated by two reasons that we discuss below.

4.1.1 Analytic continuation

Let us first recall that, given a Green’s function G as defined in [3, Definition 2.2], it is theoretically
enough to know the sequence (G(iωn))n∈N to reconstruct the whole Green’s function: as proven in [3,
Theorem 2.15] and already established in [1], −G is the only Pick matrix which is solution to the analytic
continuation problem ACC+(iωn,−G(iωn))n∈N. One proves similarly, using [3, Theorem A.8] and the
Källen-Lehmann representation [3, Equation 7] that this result holds true for the self-energy Σ and
hybridization function ∆.

In practice, several algorithms exist to perform this analytic continuation [9, 12, 4, 5, 11]. In most
cases, the output of these methods are the values of the analytic continuation on the real axis R, from
which one can extract the Nevanlinna-Riesz measure of the associated Pick function using the Stieltjes
inversion formula [8]: recall that for f a Pick Matrix given for all z ∈ C+ by

f(z) =

∫
R

1

ε− z dµ(ε)

with µ a positive-matrix-valued Borel finite measure, then we have for all x, y ∈ R,

1

2
µ({x}) +

1

2
µ({y}) + µ((x, y)) =

1

π
lim
η→0

∫ y

x

=(f(ε+ iη))dε.
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Figure 1: The set (iωn)n∈[[0,Nω]] of points in C+ used for the discretization of ∆ and Σ with Nω = 4

In particular, the Nevanlinna-Riesz measure associated to −G is the so-called spectral function A [15],
which allows to determine whether the system is a conductor or not: more precisely, the system is an
electrical conductor if 0 is in the support of A.

Based on this property, a strategy to study the conduction properties using a DMFT algorithm is as
follows :

� Run the DMFT algorithm on (∆n,Σn)n∈[[0,Nω]] until convergence is reached.

� Get the spectral function A by analytic continuation of the sequence (G(iωn))n∈[[0,Nω]], and check
for the conduction criterion.

In this chapter, we will show numerically in Section 4.3 that for the Hubbard dimer (|GH | = 2), the
system hosts a metal-to-insulator Mott transition for a fixed inverse temperature β, while varying the
on-site repulsion U. This result, already established in the seminal paper [7] for truncated lattices made
the fame of this method, and is related to uniqueness of the solution for specific parameters, as we will
discuss in Section 4.3.

For now, let us mention that analytic continuation, if theoretically well founded, suffers from ill-
conditioning issues [9, 12]. For this reason, we will use it only for illustrative purposes in Section 4.3.

4.1.2 Matsubara’s formalism

The second justification of this discretization lies in the proper definition of the IPT-DMFT equations.
We note first that equation (4.1) relates the value of ∆ in z ∈ C+ to the value of Σ on the same z ∈ C+.
More precisely, given −∆,−Σ : C+ → C+ satisfying (4.1), their values ∆n,Σn on the points (iωn)n∈[[0,Nω]]

are related by for all n ∈ [[0, Nω]],

∆n = ∆(iωn) = W
(
iωn −H0

⊥ − Σ(iωn)
)−1

W † = W
(
iωn −H0

⊥ − Σn
)−1

W †.

so that we will impose this condition on the discretized quantities. This property holds for all z ∈ C+,
and the prescription iωn is best motivated by the second equation we will impose.

Now for the discretization of (4.2), recall that by definition [3, Proposition 2.18], given −∆ : C+ →
C+, −IPTβ(U,∆) : C+ → C+ is a solution to the interpolation problem AC(iωn,Σn) (we have proven
uniqueness for hybridization functions associated to finite dimensional baths), where

Σn = U2

∫ β

0

eiωnτ

(
1

β

∑
n′∈Z

e−iωn′τ (iωn′ −∆(iωn′))
−1

)3

dτ.

In our discretized scheme, we only consider finite sequences, so that we need to truncate the above sum:
we will impose that, given (∆n)n∈[[0,Nω]], Σn is defined as

Σn = U2

∫ β

0

eiωnτ

 1

β

Nω∑
n′=−(Nω+1)

e−iωn′τ (iωn′ −∆n′)
−1

3

dτ,
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which, contrary to the discretization of (4.1), provides a given Σn from (∆n)n∈[[0,Nω]]. For now on, we

will denote (∆n)n∈[[0,Nω]] by ∆, and (Σn)n∈[[0,Nω]] by Σ. We consolidate the content of this section into
the following definition.

Definition 4.1.1 (Matsubara’s frequencies discretized IPT-DMFT equations). Given Nω ∈ N a Mat-
subara’s frequencies cutoff, the Matsubara’s frequencies discretized IPT-DMFT equations are the set of
equations defined for all n ∈ [[0, Nω]] by

∆n = W
(
iωn −H0

⊥ − Σn
)−1

W † (4.6)

Σn = U2

∫ β

0

eiωnτ

 1

β

Nω∑
n′=−(Nω+1)

e−iωn′τ (iωn′ −∆n′)
−1

3

dτ (4.7)

with −∆ = (−∆n)n∈[[0,Nω]] ∈ C+
Nω+1

, −Σ = (−Σn)n∈[[0,Nω]] ⊂ C+
Nω+1

.

We prove in the next section the existence of a solution to these equations, and will show numerically
that uniqueness is not always guaranteed.

Remark 4.1.2. The requirement that −∆,−Σ ∈ C+
Nω+1

is a minimal condition for the solution to
represent physical quantities. Nevertheless, nothing ensures a priori that a solution to these equations
admits an analytic continuation, nor if they do, that this solution is unique. This point makes the strategy
we have followed to prove existence completely different from [3] (we will not make use of results associated
to Pick functions). We refer the reader to [5], and to Section 4.3.2 for a numerical discussion about this
topic.

4.2 Existence of solutions to the discretized equations

4.2.1 Main result

In this section, we present and prove our main result about existence of solutions: using Brouwer’s
fixed-point theorem [20], we show that the above defined equations admit a solution for specific range of

parameters. The space C+
Nω+1

is equipped with the norm topology, and for all u ∈ C+
Nω+1

, we denote

by ‖u‖2 =
(∑Nω

n=0 |un|2
)1/2

the usual Euclidean norm and by B(u,R) the closed Euclidean ball of radius

R centered in u. For all Matsubara’s frequency cutoff Nω ∈ N, we introduce the critical radius RNω
defined as

sup
{
R ∈ R+ s.t. ∀z ∈ B(0, R) ∩ C+

Nω+1
,∀n ∈ [[0, Nω]], = (Fn,Nω (z)) ≤ 0

}
, (4.8)

where

Fn,Nω (z) =

Nω∑
n1,n2,n3=−(Nω+1)
n1+n2+n3=n−1

3∏
i=1

(i(2ni + 1)/π + zni)
−1
, (4.9)

where for all n ∈ [[−Nω + 1,−1]], zn = z−(n+1) (as in (4.5)). Note that the set described in (4.8) is closed.

Theorem 4.2.1 (Existence of solution to the discretized IPT-DMFT equations.). For all Matsubara’s
frequencies cutoff Nω ∈ N, the critical radius RNω is well-defined and stricly positive. Moreover, for all
inverse temperature β ∈ R∗+ and W † ∈ RL−1 satisfying

β‖W‖2 ≤
√

2
√

2RNω , (4.10)

and for all on-site repulsion U ∈ R, the set of equations given by (4.6), (4.7) admits a solution (∆,Σ) ∈
Dβ,Nω ×Sβ,Nω,U where

Dβ,Nω = B(0, RNω/β) ∩
(
−C+

Nω+1
)
, Sβ,Nω,U = IPTNω (Dβ,Nω ) (4.11)
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4.2.2 Proof of Theorem 4.2.1

We introduce BUNω and IPTNω defined for all n ∈ [[0, Nω]] by

BUNω (Σ)n = W
(
iωn −H0

⊥ − Σn
)−1

W †

IPTNω (∆)n = U2

∫ β

0

eiωnτ

 1

β

Nω∑
n′=−(Nω+1)

e−iωn′τ (iωn′ −∆n′)
−1

3

dτ

so that

(4.6) ⇐⇒ ∆ = BUNω (Σ)

(4.7) ⇐⇒ Σ = IPTNω (∆).

We show in Lemmata 4.2.2 and 4.2.3 below that these maps are well-defined on the right sets. We start
by the following lemma:

Lemma 4.2.2 (Boundedness of BUNω ). If −Σ ∈ C+
Nω+1

, then −BUNω (Σ) ∈ C+
Nω+1

, namely BUNω :

−C+
Nω+1 → −C+

Nω+1
is well defined, and

‖BUNω (Σ)‖2 ≤ β
‖W‖22
2
√

2
.

Proof. The sign of the imaginary part is a direct consequence of the definition of the imaginary part of
matrices and of the fact that if f is a Pick matrix, so is −f−1. Recall that H0

⊥ ∈ SL−1(R), so that there
exists P ∈ML−1(C) unitary with H0

⊥ = Pdiag(ε1, . . . , εL−1)P †: from that, we have for all n ∈ [[0, Nω]],

|W
(
iωn −H0

⊥ − Σn
)−1

W †|2 ≤
L−1∑
k=1

|(WP )k|2
|iωn − Σn − εk|2

≤ 1

(ωn −=(Σn))
2 ‖W‖22 ≤

‖W‖22
ω2
n

,

hence we finally have

‖BUNω (Σ)‖2 ≤ ‖W‖22

(
Nω∑
n=0

1

ω2
n

)1/2

= ‖W‖22
β

π

(
Nω∑
n=0

1

(2n+ 1)2

)1/2

≤ β ‖W‖
2
2

2
√

2
.

The analogue of this lemma for IPTNω is more restrictive as we state now, together with the well-
definiteness of the critical radius RNω . We use the convention B(0,+∞) = CNω+1 in the case RNω is not
reached.

Lemma 4.2.3 (Alternative formula for IPTNω ). Given −∆ ∈ C+
Nω+1

, IPTNω (∆) reads for all n ∈
[[0, Nω]],

IPTNω (∆)n = βU2Fn,Nω (−β∆), (4.12)

where Fn,Nω is given in (4.9). Moreover, for all Matsubara’s frequency cutoff Nω, the critical radius RNω

defined in (4.8) is well defined, and IPTNω : B(0, RNω/β) ∩
(
−C+

Nω+1
)
→ −C+

Nω+1
is well defined.

Proof. We have for all n ∈ [[0, Nω]],

IPTNω (∆)n =
U2

β3

Nω∑
n1,n2,n3=−(Nω+1)

3∏
i=1

(iωni −∆ni)
−1
∫ β

0

ei(ωn−ωn1
−ωn2

−ωn3)τdτ

=
U2

β2

Nω∑
n1,n2,n3=−(Nω+1)
n1+n2+n3=n−1

3∏
i=1

(iωni −∆ni)
−1
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as ∫ β

0

ei(ωn−ωn1−ωn2−ωn3)τdτ =

{
β if n1 + n2 + n3 = n− 1

0 else.

For the second part, we first prove that =(Fn,Nω (0)) ≤ 0: for all n ∈ [[0, Nω]], we define

A(n,Nω) =
1

π3
=(Fn,Nω (0)) =

Nω∑
n1,n2,n3=−(Nω+1)
n1+n2+n3=n−1

3∏
i=1

1

2ni + 1

Let us show that the quantity A(n,Nω) is increasing in Nω: by enumerating, we have for all n ∈ [[0, Nω]],

A(n,Nω + 1)−A(n,Nω) =
3

2Nω + 3

Nω∑
n1,n2=−(Nω+1)

n1+n2+Nω+1=n−1

1

(2n1 + 1)(2n2 + 1)
(4.13)

− 3

2Nω + 3

Nω∑
n1,n2=−(Nω+1)

n1+n2−(Nω+2)=n−1

1

(2n1 + 1)(2n2 + 1)
(4.14)

− 6

(2Nω + 3)2(2n+ 1)
.

Now for the first term (4.13) of the r.h.s., we have for all n1, n2 ∈ [[−(Nω + 1), Nω]] satisfying n1 + n2 +
Nω + 1 = n− 1,

1

(2n1 + 1)(2n2 + 1)
=

1

2(n− (Nω + 1))

(
1

2n1 + 1
+

1

2n2 + 1

)
so that

Nω∑
n1,n2=−(Nω+1)

n1+n2+Nω+1=n−1

1

(2n1 + 1)(2n2 + 1)
=

1

n− (Nω + 1)

n−1∑
n1=−(Nω+1)

1

2n1 + 1

=
1

Nω + 1− n

Nω∑
n1=n

1

2n1 + 1
,

where the last equality comes from the fact that
∑Nω
n1=−(Nω+1)

1
2n1+1 = 0. For the second term (4.14),

we also have for all n1, n2 ∈ [[−(Nω + 1), Nω]] satisfying n1 + n2 − (Nω + 2) = n− 1,

1

(2n1 + 1)(2n2 + 1)
=

1

2(n+Nω + 2)

(
1

2n1 + 1
+

1

2n2 + 1

)
,

so that
Nω∑

n1,n2=−(Nω+1)
n1+n2−(Nω+2)=n−1

1

(2n1 + 1)(2n2 + 1)
=

1

n+Nω + 2

Nω∑
n1=n+1

1

2n1 + 1
.

We end up with

A(n,Nω + 1)−A(n,Nω) =
3

2Nω + 3

(
1

Nω + 1− n −
1

n+Nω + 2

) Nω∑
n1=n+1

1

2n1 + 1

+
3

(2Nω + 3)(2n+ 1)

(
1

(Nω + 1− n)
− 2

2Nω + 3

)
which is positive, hence A(n,Nω) is increasing in Nω and so is =(Fn,Nω (0)). Note also that by Dirichlet
theorem on Fourier series and dominated convergence (see [3, Equation (64)]), we have

lim
Nω→∞

Fn,Nω (0) =
1

β
IPTβ(U = 1, 0)(iωn)
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as defined in [3, Proposition 2.18], which we have shown to be of negative imaginary part. Therefore,

=(Fn,Nω (0)) ≤ 1

β
=(IPTβ(U = 1, 0)(iωn)) < 0.

Since for all n ∈ [[0, Nω]], the map Fn,Nω is continuous in 0 (see equation (4.9)), the set described in (4.8)
is not empty and closed, such that RNωc is well-defined, which concludes.

We conclude from the two above lemmata, that for β‖W‖2 <
√

2
√

2RNω , the map DMFTNω = BUNω◦
IPTNω is well-defined from B(0, RNω/β) to itself: indeed, for all ∆ ∈ B(0, RNω/β), β∆ ∈ B(0, RNω ) so

that −IPTNω (∆) ∈ C+
Nω+1

, hence

‖BUNω (IPTNω (∆))‖2 ≤ β
‖W‖22
2
√

2
≤ RNω/β.

Since DMFTNω is continuous, it admits a fixed-point by the Brouwer fixed-point theorem, which
concludes the proof.

4.3 Iterative scheme and Mott transition

As emphasized in the proof of Theorem 4.2.1, a natural formulation of the Matsubara’s frequency dis-
cretized IPT-DMFT equations is based on the introduction of the DMFTNω map, which is defined so
that

(4.6), (4.7) ⇐⇒
{

∆ = DMFTNω (∆)
Σ = IPTNω (∆)

.

The existence (and uniqueness) of a solution is therefore equivalent to the existence (and uniqueness) of
a fixed point of DMFTNω . In this section, we make use of this formulation to come up with a DMFT
algorithm based on the implementation of the naive fixed-point algorithm (we will not consider more

elaborate methods such as Anderson acceleration). It proceeds as follows: given −∆(0) ∈ C+
Nω+1

, we
define by recursion for all n ∈ N

∆(n+1) = DMFTNω (∆(n)).

To make the setting as simple as possible, we focus on the implementation of this algorithm for the
Hubbard dimer |GH | = 2, still in the single-site translation-invariant paramagnetic case: in this setting,
H0
⊥ = 0 and W = T ∈ R (see (4.3)), so that equation (4.6) amounts to, for all n ∈ [[0, Nω]],

∆n = T 2 (iωn − Σn)
−1

(4.15)

This example, in spite of its simplicity, is enough to exhibit Mott transition (Section 4.3.1) and to
discuss the uniqueness of fixed points for specific range of parameters (Section 4.3.2).

Discretization parameters The simulations are performed using the Python/C++ library TRIQS,
version 3.1.0 [16]. Discretization parameters are chosen such that the discretization error due to the
integral performed in (4.7) can be considered as negligible: we always take a number of points Nτ
associated to the discretization of (0, β) large compared to Nω. Another reason for considering errors
related to this integral negligible is that this integral is actually performed using the Fourier method
(see TRIQS web page for the documentation), which performs tail-fitting on top. For all the simulations
to come, we took the following parameters:

Nτ = 10000, Nω = 1000

(
Nτ
Nω

= 10

)

4.3.1 Mott transition

As announced in Section 4.1, we provide numerical illustration to the existence of a metal-to-insulator
Mott transition as predicted by DMFT for the Hubbard dimer. It is known [14] that the ground-state
of such a system shall not exhibit such a phase transition, but DMFT focuses on the Gibbs state [3] for
non-zero temperatures. The procedure is as follows for a given set of parameters T,U, β :

� For an initialization ∆(0), we run Niter iterations of DMFTNω to reach a converged solution ∆∞.

135



� We then compute the associated self-energy Σ∞ = IPTNω (∆∞), and the corresponding discretized

impurity Green’s function −G∞ ∈ C+
Nω+1

as explained below. Recall that in DMFT, the later
is an approximation of the original Hubbard model Green’s function restricted to the subgraph
induced by the DMFT partition P. Recall also that by definition of the hybridization function ∆
and due to the sparsity pattern of the self-energy Σ [3, Theorem 2.8], the impurity Green’s function
of an AIM reads

Gimp =
(
z −H0

imp −∆(z)− Σimp(z)
)−1

For a partition in singletons, H0
imp = 0, so that we finally define G∞ by setting, for all n ∈ [[0, Nω]],

G∞n = (iωn −∆∞n − Σ∞n )
−1

� Finally we solve numerically the analytic continuation problem (iωn,−G∞n )n∈[[0,Nω]] using the method
set from pade, which is based on Pade approximants, and returns the values GR of this interpo-
lation on a given set of points on the real line. This set is a regular mesh of [εmin, εmax) consisting
in Nmesh ∈ N points. As already mentioned in Section 4.1, these analytic continuation methods are
ill-conditioned and we use them only for illustration purposes.

Assuming the analytic continuation is a Pick function with Nevanlinna-Riesz measure absolutely
continuous (with respect to Lebesgue measure), we get the density ρ of the spectral function A by

ρ = − 1

π
=(GR)

Let us mention that, contrary to other methods developed recently in [4], set from pade does not
ensures a priori that the analytic continuation is a Pick function, and may lead to results with
negative signs.

We plot in Figure 2 the results of this algorithm for the following parameters:

β = 1, T = 1, Niter = 50, ∆(0) = (iωn)
−1
n∈[[0,Nω]] , −εmin = εmax = 10, Nmesh = 1000 (4.16)

while varying U from 2 to 10. The big picture is similar to what is obtained for the so-called Bethe lattice
[7] and requires some comments:

� As U increases, ρ(0) decreases to reach approximately 0 between U = 6 and 8: for U < 6, the
system is a conductor according to the conduction criterion provided in Section 4.3, and insulating
for U > 8. In between these values, set from pade returns negative values of ρ(0), which refrains
this study from determining more precisely the value of U for which the Mott transition occurs, nor
if this transition really exists or if it only consists of a crossover [18].

� The density ρ is even: this is a consequence of the fact that, given a purely imaginary initialization
−∆(0) ∈ (iR+)

Nω+1
, the iterates are purely imaginary as well: ∀n ∈ N,−∆(n) ∈ (iR+)

Nω+1
(this is

a direct consequence of Lemma 4.2.3 and Equation (4.15)). Note that this property also holds true
at convergence, for non-even initializations.

This property is in relation with the fact we are dealing with half-filled systems, and a Hubbard
graph for which particle-hole symmetry holds, as detailed in [7].

For all these simulations to make sense, we need to check that convergence is reached: in the next
section, we study how this iterative scheme converges for different sets of parameters, showing how Mott
transition is affected by temperature, and how the result depends on the initial condition.
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Figure 2: Density ρ of the spectral function A obtained by analytic continuation using Pade approximants,
for different values of the on-site repulsion U. Other parameters are fixed as in (4.16).

4.3.2 Linear convergence for small and large on-site repulsion

In this section, we explore numerically the convergence of the basic fixed-point algorithm already intro-
duced. To do so, we compute the norm of the residual ‖∆(n+1) −∆(n)‖2 as a function of the iteration n.
We fix T = 1 for all the simulations, which amounts to consider β, U,∆,Σ to be adimensional quantities:
the inverse temperature β is fixed while the on-site repulsion U varies from 0.5 to 18. We also take two
radically different initial guess ∆(0) = (iωn)

−1
n∈[[0,Nω]] , ∆(0) = 0 which correspond to the two solutions in

the limit cases U = 0 and U =∞ respectively. We will consider two temperatures: first, we take β = 1,
to ensure the simulations done in the previous section are converged, then β = 10 to show the coexistence
of a physical solution and an unphysical one. We summarize in Figure 3 the settings for which we run
the simulations.

U

1
β

0.5 18

1
10

1
Fig. 4

Fig 5

∆(0) =

{
(iωn)

−1
n∈[[0,Nω]] (left)

0 (right)

T = 1.

Figure 3: Schematic of the two scans in U at fixed β, with the associated parameters.

High-temperature (β = 1) simulations. We report in Figure 4 the simulations performed for inverse
temperature β = 1, which corresponds to the setting established in Section 4.3.1. For all values of U,
the algorithm converges linearly to a solution, regardless of the choice of one of the two initial guesses,
which validates simulations performed in Section 4.3.1. The rate of convergence first increases with U to
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reach a maximum between 6 and 8, where the Mott transition takes place, and then decreases. These
simulations show that the convergence is affected by the parameters β, U: we now present what happens
for larger β, which corresponds to smaller temperatures.

Low-temperature (β = 10) simulations. Results for β = 10 are reported in Figure 5. The general
picture is quite different: for small and high on-site repulsion U, the algorithm still converges linearly
for the two initial guesses to the same solution, but for intermediate values of U (between 3 and 5),
the residual does not decay monotonously and requires much more iterations to converge. Moreover, for
U = 3 and with the initial guess ∆(0) = (iωn)

−1
n∈[[0,Nω]] (center left in Figure 5), the algorithm reaches a

stationary solution with a much larger residual compared to the simulations with ∆(0) = 0: this converged

solution, represented in Figure 6, is not in −C+
Nω+1

, hence cannot correspond to the values of a negative
of a Pick function on the given Matsubara’s frequencies.
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(a) Initial guess ∆(0) = (iωn)−1
n∈[[0,Nω ]] (b) Initial guess ∆(0) = 0

Figure 4: Residual ‖∆(n+1) −∆(n)‖2 in log scale, as a function of the iteration n ∈ [[0, Niter]], for high
temperature β = 1 and several values of U. Left and right sides differ in the initial guess ∆(0).
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(a) Initial guess ∆(0) = (iωn)−1
n∈[[0,Nω ]] (b) Initial guess ∆(0) = 0

Figure 5: Residual ‖∆(n+1) −∆(n)‖2 in log scale, as a function of the iteration n ∈ [[0, Niter]], for low
temperature β = 10 and several values of U. Left and right sides differ in the initial guess ∆(0).
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(a) Residual ‖∆(n+1) −∆(n)‖2 in log scale, as a
function of the iteration n ∈ [[0, Niter]], for β = 10
and U = 3.0, with ∆(0) = (iωn)−1

n∈[[0,Nω ]]. The resid-
ual is stationary after ≈ 200 iterations.

(b) Representation of the first 10 components of
=(∆∞). The first 2 are positive, hence there is no
negative of Pick function which interpolates ∆∞ at
the Matsubara’s frequencies (iωn)n∈[[0,Nω ]].

Figure 6: Residual convergence (left) and plot of the imaginary part of the converged solution ∆∞ (right).
The näıve fixed-point algorithm does not always converge to a physical solution (see Remark 4.1.2).

This result shows that convergence toward a physical solution is not guaranteed for intermediate
values of U for β = 10 and depends on the initialization: to overcome this issue, we will run simulations
using continuation method in the next section, starting from small/large U where the algorithm seems to
converge better. For now, let us mention that these convergences advocate for uniqueness in the small and
large on-site repulsion U regimes : we will show in Section 4.4 that it holds by perturbative arguments.

4.3.3 Continuation method and metastable solution

In this section, we give a last numerical insight about the convergence of the algorithm we have introduced:
for high temperature β = 10 and intermediary on-site repulsion U, it does not converge monotonously,
and not always toward a physical solution. These issues seem to depend on the initial guess, and to
overcome them, we use a continuation method:

� We start by running the algorithm for on-site repulsion U small/large enough: as depicted in Figure
5, the algorithm seems to converge globally regardless of the initial condition, so that we take the
initial guess ∆(0) = (iωn)

−1
n∈[[0,Nω]].

� Once the algorithm is converged, we change slightly the value of U and take as initial condition the
converged solution ∆∞ for the prior value of U.

� We repeat until we get to the values of interest in U.

We run this continuation method with two starting values of the on-site repulsion: one starts with
U = 1 and increases by steps of 1 until 4 is reached (namely U = 1, 2, 3, 4), the other starts from U = 6 and
decreases by the same steps until 2 is reached (namely U = 6, 5, 4, 3, 2). We then plot the values of ∆Niter

for the values of U common to both the increasing and decreasing sequences (namely U ∈ {2, 3, 4}).
In order to provide insights on the convergence, we run these simulations with increasing number of
iterations Niter: we start by Niter = 60, which is required so that the first simulations of the continuation
method at U = 1 and U = 6 give a converged solution ∆∞ (see Figure 5). We then take Niter = 100 and
finally Niter = 400 for which the residual is fully converged. We summarize in Figure 7 the setting.
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U

1
β

1 2 3 4 5 6

1
10

Fig 8a (left)

Fig 8b (right) β = 10, T = 1,

For U = 1 and 6, ∆(0) = (iωn)
−1
n∈[[0,Nω]]

For U = 2, 3, 4 (resp. 6, 5, 4, 3, 2),

∆(0),U = ∆(Niter),U−1 (resp. ∆(Niter),U+1)

Niter = 60 (top), 100 (center), 400 (bottom).

Figure 7: Schematic of the increasing-in-U (Figure 8a) and decreasing-in-U (Figure 8b) simulations, and
recap of the parameters used for the simulations.

(a) Performed with ∆(0) = (iωn)n∈[[0,Nω ]] at U = 1,
and then recursively for U = 2, 3, 4 increasingly,
with ∆(0),U = ∆(Niter),U−1.

(b) Performed with ∆(0) = (iωn)n∈[[0,Nω ]] at U = 6,
and then recursively for U = 5, 4, 3, 2 decreasingly,
with ∆(0),U = ∆(Niter),U+1.

Figure 8: Plot of the first 10 components of =(∆(Niter),U) with U ∈ {2, 3, 4} , for both the increasing
sequence (left) and decreasing sequence (right), with Niter = 60 (top), 100 (center), 200 (bottom).
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The results are presented in Figure 8 and commented on below:

� For U = 2 and U = 4, the simulations are converged for Niter = 60 and the increasing-in-U and
decreasing-in-U simulations solutions agree on these values of U. If each of these finite sequences
can be analytically continued into a Pick function, the case U = 2 would have a Nevanlinna-Riesz
measure concentrated in 0, while U = 4 would have a symmetric profile with small mass in 0. This
also holds for the associated Green’s functions values: as for β = 1 (see Section 4.3.1), we observe a
Mott transition but for a smaller interval in U, the case U = 2 corresponding to a conductor, while
U = 4 corresponds to an insulator.

� The case U = 3 is more delicate: for Niter = 60, the increasing-in-U exhibits a conductive-like
solution, while the decreasing-in-U solution is resembles an insulator. We also see that when
increasing Niter, the increasing-in-U simulation eventually reaches the insulating solution predicted
by the decreasing-in-U for Niter = 200. In the literature [7], this effect is not reported: on the
opposite, it is stated that for β high-enough, there is a range in U for which two solutions coexist.
This phenomenon would be a signature of the existence of a phase transition of order 1. The
present simulations are performed on an other system (the Hubbard dimer) and for much bigger
Niter. They rather support for the scenario of a ”metastable” solution, meaning it requires much
more iterations to converge than for other values of the parameters β, U.

In light of these results, it would be desirable to implement acceleration methods on this fixed-
point iteration algorithm in order to avoid this slow convergence for intermediate values of U, and a
stabilization procedure which would help in understanding the discrepancy of the increasing/decreasing
sequences detailed above. A great candidate for these two improvements is Anderson mixing. From a
mathematical perspective, a first affordable result is the uniqueness of the fixed point in the perturbative
regime, as we state now.

4.4 Uniqueness of the solution in perturbative regimes.

4.4.1 Main result

The previous simulations indicate that uniqueness of the solution, if not elucidated for arbitrary values
of the parameters T,U, β, holds perturbatively around the regimes U = 0 and T = 0, the later corre-
sponding to the formal limit case U =∞. From a mathematical perspective, it is best seen from the fact
that, similarly as with the DMFT equations [3, Proposition 2.12], the discretized IPT-DMFT equations
(4.6),(4.7) admit a unique solution in the following trivial limits:

� For U = 0, IPTNω = 0, hence the only solution is given by, for all n ∈ [[0, Nω]],

Σn = 0, ∆n = BUNω (0) = W
(
iωn −H0

⊥
)
W †

� Conversely, for T = 0, BUNω = 0, hence the only solution is given by, for all n ∈ [[0, Nω]],

Σn = IPTNω (0)n, ∆n = 0

Note moreover that the fixed-point algorithm we have implemented converges in one iteration in these

limits. In both cases, these solutions satisfy with the physicality criterion −∆,−Σ ∈ C+
Nω+1

(see the
proof of Lemma 4.2.3). The following theorem covers the perturbative regime around these two above
limit cases T = 0 or U = 0, showing the existence of a unique solution in the sets introduced in Theorem
4.2.1. It also proves the linear convergence observed for these two regimes, using a Picard fixed point
theorem. As it holds for Theorem 1, our analysis relies on the properties of Fn,Nω : let us introduce LNω

the (finite) largest Lipschitz constant of the Fn,Nω over C+
Nω+1

, for n ∈ [[0, Nω]],

LNω = max
n∈[[0,Nω]]

LipC+
(Fn,Nω ). (4.17)

Note incidentally that, since Fn,Nω is a sum of rational function in the (∆n)n∈[[0,Nω]] with poles on the
negative imaginary axis iR∗−, we have for all R > 0, LipC+

Nω+1(Fn,Nω ) = Lip
B(0,R)∩C+

Nω+1(Fn,Nω ).
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Theorem 4.4.1 (Uniqueness of the solution to the discretized IPT-DMFT equations). For all Matsub-
ara’s frequencies cutoff Nω ∈ N, inverse temperature β ∈ R∗+, W † ∈ RL−1, and on-site repulsion U ∈ R
satisfying with the assumption of Theorem 1 (4.10) and(

β2‖W‖2U
π

)2

LNω < 1, (4.18)

the discretized IPT-DMFT equations (4.6) (4.7) admits a unique solution in Dβ × Sβ,Nω,U . Moreover,
the fixed point algorithm sequence

(
∆(n)

)
n∈N

∆(0) ∈ Dβ , ∀n ∈ N, ∆(n+1) = DMFTNω (∆(n)) (4.19)

converges linearly toward this solution.

In particular, Assumption (4.18) holds true for T or U small enough.

4.4.2 Proof of Theorem 4.4.1

As announced, the proof is based on Picard fixed-point theorem on Dβ,Nω . The first estimate is the
following.

Lemma 4.4.2 (Estimate on BUNω ). Given −Σ1,−Σ2 ∈ C+, the following estimate holds

‖BUNω (Σ1)− BUNω (Σ2)‖2 ≤ β2 ‖W‖22
π2
‖Σ1 − Σ2‖2

Proof. Note that the resolvent identity yields for all n ∈ [[0, Nω]]

BUNω (Σ1)(iωn)− BUNω (Σ2)(iωn) = (Σ1(iωn)− Σ2(iωn))

W
(
iωn − Σ1(iωn)−H0

⊥
)−1 (

iωn − Σ2(iωn)−H0
⊥
)−1

W †

and we have similarly as in the proof of lemma 4.2.2

|W
(
iωn − Σ1(iωn)−H0

⊥
)−1 (

iωn − Σ2(iωn)−H0
⊥
)−1

W †|2 ≤ (WW †)2 1

ω4
n

≤ β4 (WW †)2

π4
,

so that we end up with

‖BUNω (Σ1)(iωn)− BUNω (Σ2)(iωn)‖ ≤ β2WW †

π2

(
Nω∑
n=0

|Σ1(iωn)− Σ2(iωn)|2
)1/2

which concludes the proof.

Now for IPTNω , we have the following estimate.

Lemma 4.4.3 (Estimate on IPTNω ). For all Matsubara’s frequency cutoff Nω ∈ N, IPTNω is C∞ on

−C+
Nω+1

, and for all ∆1,∆2 ∈ −C+
Nω+1

,

‖IPTNω (∆1)− IPTNω (∆2)‖2 ≤ (βU)
2
LNω‖∆1 −∆2‖2 (4.20)

where

Proof. This follows directly from Lemma 4.2.3 and the definition of the corresponding constants: for all

∆1,∆2 ∈ −C+
Nω+1

, we have

‖IPTNω (∆1)− IPTNω (∆2)‖2 = βU2

(
Nω∑
n=0

|Fn,Nω (−β∆1)− Fn,Nω (−β∆2)|2
)1/2

(4.21)

≤ (βU)2LNω‖∆1 −∆2‖ (4.22)

Now, under the assumption that (4.10) holds, DMFTNω is well defined from Dβ,Nω to itself. Moreover,
using Lemmata 4.2.3, 4.4.2 and 4.4.3, we have for all ∆1,∆2 ∈ Dβ,Nω

‖DMFTNω (∆1)−DMFTNω (∆2)‖2 ≤
(
β2‖W‖2U

π

)2

LNω‖∆1 −∆2‖2, (4.23)

and we conclude using Picard fixed-point theorem.
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